Your browser doesn't support javascript.
loading
Noninvasive Quantification of Pressure-Volume Loops From Brachial Pressure and Cardiovascular Magnetic Resonance.
Seemann, Felicia; Arvidsson, Per; Nordlund, David; Kopic, Sascha; Carlsson, Marcus; Arheden, Håkan; Heiberg, Einar.
Afiliação
  • Seemann F; Department of Clinical Physiology, Lund University, Skåne University Hospital (F.S., P.A., D.N., S.K., M.C., H.A., E.H.).
  • Arvidsson P; Department of Biomedical Engineering (F.S., E.H.), Lund University, Sweden.
  • Nordlund D; Department of Clinical Physiology, Lund University, Skåne University Hospital (F.S., P.A., D.N., S.K., M.C., H.A., E.H.).
  • Kopic S; Department of Clinical Physiology, Lund University, Skåne University Hospital (F.S., P.A., D.N., S.K., M.C., H.A., E.H.).
  • Carlsson M; Department of Clinical Physiology, Lund University, Skåne University Hospital (F.S., P.A., D.N., S.K., M.C., H.A., E.H.).
  • Arheden H; Department of Clinical Physiology, Lund University, Skåne University Hospital (F.S., P.A., D.N., S.K., M.C., H.A., E.H.).
  • Heiberg E; Department of Clinical Physiology, Lund University, Skåne University Hospital (F.S., P.A., D.N., S.K., M.C., H.A., E.H.).
Circ Cardiovasc Imaging ; 12(1): e008493, 2019 12.
Article em En | MEDLINE | ID: mdl-30630347
ABSTRACT

BACKGROUND:

Pressure-volume (PV) loops provide a wealth of information on cardiac function but are not readily available in clinical routine or in clinical trials. This study aimed to develop and validate a noninvasive method to compute individualized left ventricular PV loops.

METHODS:

The proposed method is based on time-varying elastance, with experimentally optimized model parameters from a training set (n=5 pigs), yielding individualized PV loops. Model inputs are left ventricular volume curves from cardiovascular magnetic resonance imaging and brachial pressure. The method was experimentally validated in a separate set (n=9 pig experiments) using invasive pressure measurements and cardiovascular magnetic resonance images and subsequently applied to human healthy controls (n=13) and patients with heart failure (n=28).

RESULTS:

There was a moderate-to-excellent agreement between in vivo-measured and model-calculated stroke work (intraclass correlation coefficient, 0.93; bias, -0.02±0.03 J), mechanical potential energy (intraclass correlation coefficient, 0.57; bias, -0.04±0.03 J), and ventricular efficiency (intraclass correlation coefficient, 0.84; bias, 3.5±2.1%). The model yielded lower ventricular efficiency ( P<0.0001) and contractility ( P<0.0001) in patients with heart failure compared with controls, as well as a higher potential energy ( P<0.0001) and energy per ejected volume ( P<0.0001). Furthermore, the model produced realistic values of stroke work and physiologically representative PV loops.

CONCLUSIONS:

We have developed the first experimentally validated, noninvasive method to compute left ventricular PV loops and associated quantitative measures. The proposed method shows significant agreement with in vivo-derived measurements and could support clinical decision-making and provide surrogate end points in clinical heart failure trials.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Artéria Braquial / Função Ventricular Esquerda / Pressão Ventricular / Imagem Cinética por Ressonância Magnética / Pressão Arterial / Insuficiência Cardíaca / Ventrículos do Coração / Modelos Cardiovasculares Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Artéria Braquial / Função Ventricular Esquerda / Pressão Ventricular / Imagem Cinética por Ressonância Magnética / Pressão Arterial / Insuficiência Cardíaca / Ventrículos do Coração / Modelos Cardiovasculares Idioma: En Ano de publicação: 2019 Tipo de documento: Article