Your browser doesn't support javascript.
loading
Learning the space-time phase diagram of bacterial swarm expansion.
Jeckel, Hannah; Jelli, Eric; Hartmann, Raimo; Singh, Praveen K; Mok, Rachel; Totz, Jan Frederik; Vidakovic, Lucia; Eckhardt, Bruno; Dunkel, Jörn; Drescher, Knut.
Afiliação
  • Jeckel H; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
  • Jelli E; Fachbereich Physik and LOEWE Zentrum für Synthetische Mikrobiologie SYNMIKRO, Philipps-Universität Marburg, 35032 Marburg, Germany.
  • Hartmann R; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Singh PK; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
  • Mok R; Fachbereich Physik and LOEWE Zentrum für Synthetische Mikrobiologie SYNMIKRO, Philipps-Universität Marburg, 35032 Marburg, Germany.
  • Totz JF; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
  • Vidakovic L; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
  • Eckhardt B; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Dunkel J; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Drescher K; Institute for Theoretical Physics, Technische Universität Berlin, 10623 Berlin, Germany.
Proc Natl Acad Sci U S A ; 116(5): 1489-1494, 2019 01 29.
Article em En | MEDLINE | ID: mdl-30635422
Coordinated dynamics of individual components in active matter are an essential aspect of life on all scales. Establishing a comprehensive, causal connection between intracellular, intercellular, and macroscopic behaviors has remained a major challenge due to limitations in data acquisition and analysis techniques suitable for multiscale dynamics. Here, we combine a high-throughput adaptive microscopy approach with machine learning, to identify key biological and physical mechanisms that determine distinct microscopic and macroscopic collective behavior phases which develop as Bacillus subtilis swarms expand over five orders of magnitude in space. Our experiments, continuum modeling, and particle-based simulations reveal that macroscopic swarm expansion is primarily driven by cellular growth kinetics, whereas the microscopic swarming motility phases are dominated by physical cell-cell interactions. These results provide a unified understanding of bacterial multiscale behavioral complexity in swarms.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacillus subtilis / Movimento Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacillus subtilis / Movimento Idioma: En Ano de publicação: 2019 Tipo de documento: Article