Your browser doesn't support javascript.
loading
Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants.
Silveira, Neidiquele M; Seabra, Amedea B; Marcos, Fernanda C C; Pelegrino, Milena T; Machado, Eduardo C; Ribeiro, Rafael V.
Afiliação
  • Silveira NM; Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil.
  • Seabra AB; Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
  • Marcos FCC; Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
  • Pelegrino MT; Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
  • Machado EC; Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil.
  • Ribeiro RV; Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil. Electronic address: rvr@unicamp.br.
Nitric Oxide ; 84: 38-44, 2019 03 01.
Article em En | MEDLINE | ID: mdl-30639449
ABSTRACT
The entrapment of NO donors in nanomaterials has emerged as a strategy to protect these molecules from rapid degradation, allowing a more controlled release of NO and prolonging its effect. On the other hand, we have found beneficial effects of S-nitrosoglutathione (GSNO) - a NO donor - supplying to sugarcane plants under water deficit. Here, we hypothesized that GSNO encapsulated into nanoparticles would be more effective in attenuating the effects of water deficit on sugarcane plants as compared to the supplying of GSNO in its free form. The synthesis and characterization of chitosan nanoparticles containing GSNO were also reported. Sugarcane plants were grown in nutrient solution, and then subjected to the following treatments control (well-hydrated); water deficit (WD); WD + GSNO sprayed in its free form (WDG) or encapsulated (WDG-NP). In general, both GSNO forms attenuated the effects of water deficit on sugarcane plants. However, the encapsulation of this donor into chitosan nanoparticles caused higher photosynthetic rates under water deficit, as compared to plants supplied with free GSNO. The root/shoot ratio was also increased when encapsulated GSNO was supplied, indicating that delayed release of NO improves drought tolerance of sugarcane plants. Our results provide experimental evidence that nanotechnology can be used for enhancing NO-induced benefits for plants under stressful conditions, alleviating the negative impact of water deficit on plant metabolism and increasing biomass allocation to root system.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estresse Fisiológico / Doadores de Óxido Nítrico / S-Nitrosoglutationa / Saccharum / Quitosana / Nanopartículas Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estresse Fisiológico / Doadores de Óxido Nítrico / S-Nitrosoglutationa / Saccharum / Quitosana / Nanopartículas Idioma: En Ano de publicação: 2019 Tipo de documento: Article