Your browser doesn't support javascript.
loading
SLFN11 can sensitize tumor cells towards IFN-γ-mediated T cell killing.
Mezzadra, Riccardo; de Bruijn, Marjolein; Jae, Lucas T; Gomez-Eerland, Raquel; Duursma, Anja; Scheeren, Ferenc A; Brummelkamp, Thijn R; Schumacher, Ton N.
Afiliação
  • Mezzadra R; Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • de Bruijn M; Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • Jae LT; Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • Gomez-Eerland R; Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • Duursma A; Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • Scheeren FA; Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • Brummelkamp TR; Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • Schumacher TN; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
PLoS One ; 14(2): e0212053, 2019.
Article em En | MEDLINE | ID: mdl-30753225
ABSTRACT
Experimental and clinical observations have highlighted the role of cytotoxic T cells in human tumor control. However, the parameters that control tumor cell sensitivity to T cell attack remain incompletely understood. To identify modulators of tumor cell sensitivity to T cell effector mechanisms, we performed a whole genome haploid screen in HAP1 cells. Selection of tumor cells by exposure to tumor-specific T cells identified components of the interferon-γ (IFN-γ) receptor (IFNGR) signaling pathway, and tumor cell killing by cytotoxic T cells was shown to be in large part mediated by the pro-apoptotic effects of IFN-γ. Notably, we identified schlafen 11 (SLFN11), a known modulator of DNA damage toxicity, as a regulator of tumor cell sensitivity to T cell-secreted IFN-γ. SLFN11 does not influence IFNGR signaling, but couples IFNGR signaling to the induction of the DNA damage response (DDR) in a context dependent fashion. In line with this role of SLFN11, loss of SLFN11 can reduce IFN-γ mediated toxicity. Collectively, our data indicate that SLFN11 can couple IFN-γ exposure of tumor cells to DDR and cellular apoptosis. Future work should reveal the mechanistic basis for the link between IFNGR signaling and DNA damage response, and identify tumor cell types in which SLFN11 contributes to the anti-tumor activity of T cells.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Nucleares / Linfócitos T Citotóxicos / Interferon gama / Apoptose Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Nucleares / Linfócitos T Citotóxicos / Interferon gama / Apoptose Idioma: En Ano de publicação: 2019 Tipo de documento: Article