Your browser doesn't support javascript.
loading
Overlapping and differential functions of ATF6α versus ATF6ß in the mouse heart.
Correll, Robert N; Grimes, Kelly M; Prasad, Vikram; Lynch, Jeffrey M; Khalil, Hadi; Molkentin, Jeffery D.
Afiliação
  • Correll RN; Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA.
  • Grimes KM; Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
  • Prasad V; Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
  • Lynch JM; Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
  • Khalil H; Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
  • Molkentin JD; Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
Sci Rep ; 9(1): 2059, 2019 02 14.
Article em En | MEDLINE | ID: mdl-30765833
ABSTRACT
Hemodynamic stress on the mammalian heart results in compensatory hypertrophy and activation of the unfolded protein response through activating transcription factor 6α (ATF6α) in cardiac myocytes, but the roles of ATF6α or the related transcription factor ATF6ß in regulating this hypertrophic response are not well-understood. Here we examined the effects of loss of ATF6α or ATF6ß on the cardiac response to pressure overload. Mice gene-deleted for Atf6 or Atf6b were subjected to 2 weeks of transverse aortic constriction, and each showed a significant reduction in hypertrophy with reduced expression of endoplasmic reticulum (ER) stress-associated proteins compared with controls. However, with long-term pressure overload both Atf6 and Atf6b null mice showed enhanced decompensation typified by increased heart weight, pulmonary edema and reduced function compared to control mice. Our subsequent studies using cardiac-specific transgenic mice expressing the transcriptionally active N-terminus of ATF6α or ATF6ß revealed that these factors control overlapping gene expression networks that include numerous ER protein chaperones and ER associated degradation components. This work reveals previously unappreciated roles for ATF6α and ATF6ß in regulating the pressure overload induced cardiac hypertrophic response and in controlling the expression of genes that condition the ER during hemodynamic stress.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fator 6 Ativador da Transcrição / Coração Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fator 6 Ativador da Transcrição / Coração Idioma: En Ano de publicação: 2019 Tipo de documento: Article