Your browser doesn't support javascript.
loading
Tissue self-organization based on collective cell migration by contact activation of locomotion and chemotaxis.
Fujimori, Taihei; Nakajima, Akihiko; Shimada, Nao; Sawai, Satoshi.
Afiliação
  • Fujimori T; Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan.
  • Nakajima A; Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan.
  • Shimada N; Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, 153-8902 Tokyo, Japan.
  • Sawai S; Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan.
Proc Natl Acad Sci U S A ; 116(10): 4291-4296, 2019 03 05.
Article em En | MEDLINE | ID: mdl-30782791
ABSTRACT
Despite their central role in multicellular organization, navigation rules that dictate cell rearrangement remain largely undefined. Contact between neighboring cells and diffusive attractant molecules are two of the major determinants of tissue-level patterning; however, in most cases, molecular and developmental complexity hinders one from decoding the exact governing rules of individual cell movement. A primordial example of tissue patterning by cell rearrangement is found in the social amoeba Dictyostelium discoideum where the organizing center or the "tip" self-organizes as a result of sorting of differentiating prestalk and prespore cells. By employing microfluidics and microsphere-based manipulation of navigational cues at the single-cell level, here we uncovered a previously overlooked mode of Dictyostelium cell migration that is strictly directed by cell-cell contact. The cell-cell contact signal is mediated by E-set Ig-like domain-containing heterophilic adhesion molecules TgrB1/TgrC1 that act in trans to induce plasma membrane recruitment of the SCAR complex and formation of dendritic actin networks, and the resulting cell protrusion competes with those induced by chemoattractant cAMP. Furthermore, we demonstrate that both prestalk and prespore cells can protrude toward the contact signal as well as to chemotax toward cAMP; however, when given both signals, prestalk cells orient toward the chemoattractant, whereas prespore cells choose the contact signal. These data suggest a model of cell sorting by competing juxtacrine and diffusive cues, each with potential to drive its own mode of collective cell migration.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Movimento Celular / Quimiotaxia / Locomoção Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Movimento Celular / Quimiotaxia / Locomoção Idioma: En Ano de publicação: 2019 Tipo de documento: Article