Your browser doesn't support javascript.
loading
Enhanced catalytic stability and reusability of nitrilase encapsulated in ethyleneamine-mediated biosilica for regioselective hydrolysis of 1-cyanocycloalkaneacetonitrile.
Xu, Zhe; Huang, Ji-Wei; Xia, Chao-Jie; Zou, Shu-Ping; Xue, Ya-Ping; Zheng, Yu-Guo.
Afiliação
  • Xu Z; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Huang JW; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Xia CJ; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Zou SP; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Xue YP; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Zheng YG; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
Int J Biol Macromol ; 130: 117-124, 2019 Jun 01.
Article em En | MEDLINE | ID: mdl-30807797
ABSTRACT
Nitrilase-catalyzed regioselective hydrolysis of 1-cyanocyclohexaneacetonitrile (1-CHAN) is a green and efficient approach for the preparation of 1-cyanocyclohexaneacetic acid (1-CHAA), a key precursor for the synthesis of gabapentin. Here, a mesoporous biosilica particles prepared by the ethyleneamine-mediated silicification have been used as carrier for the encapsulation of nitrilase from Acidovorax facilis (NitA). The silica-encapsulated NitA (NitA@silica) with triethylenetetramine as an initiator showed the highest immobilization efficiency (98.3%) and specific activity (672.6 U/g). Both free and encapsulated NitA were optimally active at 40 °C and pH 7.0, however, the encapsulated enzyme exhibited wider optimum temperature range, and enhanced thermal stability compared with the free enzyme. The kinetic parameters Km and Vmax for free and encapsulated NitA were calculated to be 141 mM and 9.97 mM min-1, and 280 mM and 9.02 mM min-1, respectively. The encapsulated NitA showed good reusability and retained about 94.2% of its initial activity even after 16 cycles of reaction. Also, the storage experiments revealed high activity maintenance of encapsulated NitA after 17-day storage at 4 °C. A preparative scale regioselective hydrolysis of 1-CHAN to 1-CHAA with encapsulated NitA as biocatalyst was carried out in a 2 L stirred bioreactor. The concentration of 1-CHAA reached 152 g/L after 8 h reaction and the conversion was 90.9%. These results showed that the encapsulation of NitA in ethyleneamine-mediated biosilica is an efficient and simple way for preparation of stable nitrilase and have a great potential for application in enzymatic production of carboxylic acids.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acetonitrilas / Trientina / Cicloexanos / Biocatálise / Aminoidrolases / Nitrilas Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acetonitrilas / Trientina / Cicloexanos / Biocatálise / Aminoidrolases / Nitrilas Idioma: En Ano de publicação: 2019 Tipo de documento: Article