Your browser doesn't support javascript.
loading
High-Energy Rechargeable Metallic Lithium Battery at -70 °C Enabled by a Cosolvent Electrolyte.
Dong, Xiaoli; Lin, Yuxiao; Li, Panlong; Ma, Yuanyuan; Huang, Jianhang; Bin, Duan; Wang, Yonggang; Qi, Yue; Xia, Yongyao.
Afiliação
  • Dong X; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Lin Y; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
  • Li P; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Ma Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Huang J; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Bin D; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Wang Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Qi Y; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
  • Xia Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
Angew Chem Int Ed Engl ; 58(17): 5623-5627, 2019 Apr 16.
Article em En | MEDLINE | ID: mdl-30821403
ABSTRACT
Lithium metal is an ideal anode for high-energy rechargeable batteries at low temperature, yet hindered by the electrochemical instability with the electrolyte. Concentrated electrolytes can improve the oxidative/reductive stability, but encounter high viscosity. Herein, a co-solvent formulation was designed to resolve the dilemma. By adding electrochemically "inert" dichloromethane (DCM) as a diluent in concentrated ethyl acetate (EA)-based electrolyte, the co-solvent electrolyte demonstrated a high ionic conductivity (0.6 mS cm-1 ), low viscosity (0.35 Pa s), and wide range of potential window (0-4.85 V) at -70 °C. Spectral characterizations and simulations show these unique properties are associated with the co-solvation structure, in which high-concentration clusters of salt in the EA solvent were surrounded by mobile DCM diluent. Overall, this novel electrolyte enabled rechargeable metallic Li battery with high energy (178 Wh kg-1 ) and power (2877 W kg-1 ) at -70 °C.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article