Your browser doesn't support javascript.
loading
Parallel Coordinate Descent Newton Method for Efficient L1 -Regularized Loss Minimization.
IEEE Trans Neural Netw Learn Syst ; 30(11): 3233-3245, 2019 Nov.
Article em En | MEDLINE | ID: mdl-30843852
The recent years have witnessed advances in parallel algorithms for large-scale optimization problems. Notwithstanding the demonstrated success, existing algorithms that parallelize over features are usually limited by divergence issues under high parallelism or require data preprocessing to alleviate these problems. In this paper, we propose a Parallel Coordinate Descent algorithm using approximate Newton steps (PCDN) that is guaranteed to converge globally without data preprocessing. The key component of the PCDN algorithm is the high-dimensional line search, which guarantees the global convergence with high parallelism. The PCDN algorithm randomly partitions the feature set into b subsets/bundles of size P , and sequentially processes each bundle by first computing the descent directions for each feature in parallel and then conducting P -dimensional line search to compute the step size. We show that: 1) the PCDN algorithm is guaranteed to converge globally despite increasing parallelism and 2) the PCDN algorithm converges to the specified accuracy ϵ within the limited iteration number of Tϵ , and Tϵ decreases with increasing parallelism. In addition, the data transfer and synchronization cost of the P -dimensional line search can be minimized by maintaining intermediate quantities. For concreteness, the proposed PCDN algorithm is applied to L1 -regularized logistic regression and L1 -regularized L2 -loss support vector machine problems. Experimental evaluations on seven benchmark data sets show that the PCDN algorithm exploits parallelism well and outperforms the state-of-the-art methods.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article