Your browser doesn't support javascript.
loading
Cardiomyopathy Mutations in Metavinculin Disrupt Regulation of Vinculin-Induced F-Actin Assemblies.
Sarker, Muzaddid; Lee, Hyunna T; Mei, Lin; Krokhotin, Andrey; de Los Reyes, Santiago Espinosa; Yen, Laura; Costantini, Lindsey M; Griffith, Jack; Dokholyan, Nikolay V; Alushin, Gregory M; Campbell, Sharon L.
Afiliação
  • Sarker M; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Lee HT; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Mei L; Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA.
  • Krokhotin A; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • de Los Reyes SE; Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA.
  • Yen L; Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10025, USA.
  • Costantini LM; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Griffith J; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Dokholyan NV; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Alushin GM; Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA.
  • Campbell SL; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address: campbesl@med.unc.edu.
J Mol Biol ; 431(8): 1604-1618, 2019 04 05.
Article em En | MEDLINE | ID: mdl-30844403
ABSTRACT
Debilitating heart conditions, notably dilated and hypertrophic cardiomyopathies (CMs), are associated with point mutations in metavinculin, a larger isoform of the essential cytoskeletal protein vinculin. Metavinculin is co-expressed with vinculin at sub-stoichiometric ratios in cardiac tissues. CM mutations in the metavinculin tail domain (MVt) occur within the extra 68-residue insert that differentiates it from the vinculin tail domain (Vt). Vt binds actin filaments (F-actin) and promotes vinculin dimerization to bundle F-actin into thick fibers. While MVt binds to F-actin in a similar manner to Vt, MVt is incapable of F-actin bundling and inhibits Vt-mediated F-actin bundling. We performed F-actin co-sedimentation and negative-stain EM experiments to dissect the coordinated roles of metavinculin and vinculin in actin fiber assembly and the effects of three known metavinculin CM mutations. These CM mutants were found to weakly induce the formation of disordered F-actin assemblies. Notably, they fail to inhibit Vt-mediated F-actin bundling and instead promote formation of large assemblies embedded with linear bundles. Computational models of MVt bound to F-actin suggest that MVt undergoes a conformational change licensing the formation of a protruding sub-domain incorporating the insert, which sterically prevents dimerization and bundling of F-actin by Vt. Sub-domain formation is destabilized by CM mutations, disrupting this inhibitory mechanism. These findings provide new mechanistic insights into the ability of metavinculin to tune actin organization by vinculin and suggest that dysregulation of this process by CM mutants could underlie their malfunction in disease.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Actinas / Vinculina / Mutação Puntual / Cardiomiopatias Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Actinas / Vinculina / Mutação Puntual / Cardiomiopatias Idioma: En Ano de publicação: 2019 Tipo de documento: Article