Your browser doesn't support javascript.
loading
Stem cells from human exfoliated deciduous teeth ameliorate type II diabetic mellitus in Goto-Kakizaki rats.
Rao, Nanquan; Wang, Xiaotong; Zhai, Yue; Li, Jingzhi; Xie, Jing; Zhao, Yuming; Ge, Lihong.
Afiliação
  • Rao N; 1Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081 People's Republic of China.
  • Wang X; 2Department of Oral Emergency Department, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081 People's Republic of China.
  • Zhai Y; 1Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081 People's Republic of China.
  • Li J; 1Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081 People's Republic of China.
  • Xie J; 3Department of Stomatology, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, 518026 People's Republic of China.
  • Zhao Y; 1Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081 People's Republic of China.
  • Ge L; 1Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081 People's Republic of China.
Diabetol Metab Syndr ; 11: 22, 2019.
Article em En | MEDLINE | ID: mdl-30858895
ABSTRACT

BACKGROUND:

By 2030, diabetes mellitus (DM) will be the 7th leading cause of death worldwide. Type 2 DM (T2DM) is the most common type of DM and is characterized by insulin resistance and defective ß-cell secretory function. Stem cells from human exfoliated deciduous teeth (SHED) are favorable seed cells for mesenchymal stem cells (MSCs)-based therapy due to their higher proliferation rates and easier access to retrieval. Currently, no study has revealed the therapeutic efficiency of MSCs for T2DM in Goto-Kakizaki (GK) rats. Hence, we aimed to explore the effect of SHED on T2DM in GK rats. MATERIALS AND

METHODS:

We investigated the effects of SHED on the progression of T2DM in GK rats. SHED and bone marrow mesenchymal stem cells (BMSCs) were injected via the tail vein. Body weight, fasting blood glucose and non-fasting blood glucose were measured before and after administration. At 8 weeks after injection, intraperitoneal insulin tolerance tests (IPITTs) and insulin release tests (IRTs) were performed. Additionally, hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining and double-label immunofluorescence staining were used to explore the pathological changes in pancreatic islets and the liver. Immunohistochemistry (IHC) was employed to detect SHED engraftment in the liver. Additionally, real-time PCR and western blotting were used to explore glycogen synthesis, glycolysis and gluconeogenesis in the liver.

RESULTS:

At 8 weeks after SHED injection, T2DM was dramatically attenuated, including hyperglycemia, IPGTT and IRT. Additionally, histological analysis showed that SHED injection improved pancreatic islet and liver damage. Real-time PCR analysis showed that SHED significantly reversed the diabetic-induced increase of G-6-Pase, Pck1 and PK; and significantly reversed the diabetic-induced decrease of GSK3ß, GLUT2, and PFKL. In addition, western blotting demonstrated that SHED significantly reversed the diabetic-induced increase of G-6-Pase and reversed the diabetic-induced decrease of GLUT2, GSK3ß and PFKM.

CONCLUSION:

Stem cells from human exfoliated deciduous teeth offers a potentially effective therapeutic modality for ameliorating T2DM, including hyperglycemia, insulin resistance, pancreatic islets and liver damage, and decreased glycogen synthesis, inhibited glycolysis and increased gluconeogenesis in the liver.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article