Your browser doesn't support javascript.
loading
Sparsity estimation from compressive projections via sparse random matrices.
Ravazzi, Chiara; Fosson, Sophie; Bianchi, Tiziano; Magli, Enrico.
Afiliação
  • Ravazzi C; 1National Research Council of Italy, IEIIT-CNR, c/o Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy.
  • Fosson S; 2Politecnico di Torino, DAUIN, Corso Duca degli Abruzzi 24, Torino, 10129 Italy.
  • Bianchi T; 3Politecnico di Torino, DET, Corso Duca degli Abruzzi 24, Torino, 10129 Italy.
  • Magli E; 3Politecnico di Torino, DET, Corso Duca degli Abruzzi 24, Torino, 10129 Italy.
EURASIP J Adv Signal Process ; 2018(1): 56, 2018.
Article em En | MEDLINE | ID: mdl-30956656
ABSTRACT
The aim of this paper is to develop strategies to estimate the sparsity degree of a signal from compressive projections, without the burden of recovery. We consider both the noise-free and the noisy settings, and we show how to extend the proposed framework to the case of non-exactly sparse signals. The proposed method employs γ-sparsified random matrices and is based on a maximum likelihood (ML) approach, exploiting the property that the acquired measurements are distributed according to a mixture model whose parameters depend on the signal sparsity. In the presence of noise, given the complexity of ML estimation, the probability model is approximated with a two-component Gaussian mixture (2-GMM), which can be easily learned via expectation-maximization. Besides the design of the method, this paper makes two novel contributions. First, in the absence of noise, sufficient conditions on the number of measurements are provided for almost sure exact estimation in different regimes of behavior, defined by the scaling of the measurements sparsity γ and the signal sparsity. In the presence of noise, our second contribution is to prove that the 2-GMM approximation is accurate in the large system limit for a proper choice of γ parameter. Simulations validate our predictions and show that the proposed algorithms outperform the state-of-the-art methods for sparsity estimation. Finally, the estimation strategy is applied to non-exactly sparse signals. The results are very encouraging, suggesting further extension to more general frameworks.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article