Your browser doesn't support javascript.
loading
Research on the Methods for the Mass Production of Multi-Scale Organs-On-Chips.
Díaz Lantada, Andrés; Pfleging, Wilhelm; Besser, Heino; Guttmann, Markus; Wissmann, Markus; Plewa, Klaus; Smyrek, Peter; Piotter, Volker; García-Ruíz, Josefa Predestinación.
Afiliação
  • Díaz Lantada A; Product Development Laboratory, Mechanical Engineering Department, Universidad Politécnica de Madrid (UPM), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain. adiaz@etsii.upm.es.
  • Pfleging W; Institute of Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. wilhelm.pfleging@kit.edu.
  • Besser H; Karlsruhe Nano Micro Facility (KNMF-Helmholtz Research Infrastructure), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. wilhelm.pfleging@kit.edu.
  • Guttmann M; Institute of Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. heino.besser@kit.edu.
  • Wissmann M; Karlsruhe Nano Micro Facility (KNMF-Helmholtz Research Infrastructure), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. heino.besser@kit.edu.
  • Plewa K; Karlsruhe Nano Micro Facility (KNMF-Helmholtz Research Infrastructure), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. markus.guttmann@kit.edu.
  • Smyrek P; Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. markus.guttmann@kit.edu.
  • Piotter V; Karlsruhe Nano Micro Facility (KNMF-Helmholtz Research Infrastructure), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. markus.wissmann@kit.edu.
  • García-Ruíz JP; Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. markus.wissmann@kit.edu.
Polymers (Basel) ; 10(11)2018 Nov 07.
Article em En | MEDLINE | ID: mdl-30961163
The success of labs- and organs-on-chips as transformative technologies in the biomedical arena relies on our capacity of solving some current challenges related to their design, modeling, manufacturability, and usability. Among present needs for the industrial scalability and impact promotion of these bio-devices, their sustainable mass production constitutes a breakthrough for reaching the desired level of repeatability in systematic testing procedures based on labs- and organs-on-chips. The use of adequate biomaterials for cell-culture processes and the achievement of the multi-scale features required, for in vitro modeling the physiological interactions among cells, tissues, and organoids, which prove to be demanding requirements in terms of production. This study presents an innovative synergistic combination of technologies, including: laser stereolithography, laser material processing on micro-scale, electroforming, and micro-injection molding, which enables the rapid creation of multi-scale mold cavities for the industrial production of labs- and organs-on-chips using thermoplastics apt for in vitro testing. The procedure is validated by the design, rapid prototyping, mass production, and preliminary testing with human mesenchymal stem cells of a conceptual multi-organ-on-chip platform, which is conceived for future studies linked to modeling cell-to-cell communication, understanding cell-material interactions, and studying metastatic processes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article