Your browser doesn't support javascript.
loading
Impact of Electron-Beam Heating during 3D Nanoprinting.
Mutunga, Eva; Winkler, Robert; Sattelkow, Jürgen; Rack, Philip D; Plank, Harald; Fowlkes, Jason D.
Afiliação
  • Mutunga E; Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.
  • Winkler R; Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy , Graz University of Technology , Steyrergasse 17 , 8010 Graz , Austria.
  • Sattelkow J; Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy , Graz University of Technology , Steyrergasse 17 , 8010 Graz , Austria.
  • Rack PD; Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.
  • Plank H; Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nano-Probes, Institute of Electron Microscopy , Graz University of Technology , Steyrergasse 17 , 8010 Graz , Austria.
  • Fowlkes JD; Christian Doppler Laboratory DEFINE, Institute of Electron Microscopy , Graz University of Technology , Steyrergasse 17 , 8010 Graz , Austria.
ACS Nano ; 13(5): 5198-5213, 2019 May 28.
Article em En | MEDLINE | ID: mdl-30986036
ABSTRACT
An artifact limiting the reproduction of three-dimensional (3D) designs using nanoprinting has been quantified. Beam-induced heating was determined through complementary experiments, models, and simulations to affect the deposition rate during the 3D nanoprinting of mesh objects using focused electron beam induced deposition (FEBID). The mesh objects are constructed using interconnected nanowires. During nanowire growth, the beam interaction driving deposition also causes local heating. The temperature at the beam impact region progressively rises as thermal resistance increases with nanowire growth. Heat dissipation resembles the classical mode of heat transfer from extended surfaces; heat must flow through the mesh object to reach the substrate sink. Simulations reveal that beam heating causes an increase in the rate of precursor desorption at the BIR, causing a concomitant decrease in the deposition rate, overwhelming an increase in the deposition rate driven by thermally enhanced precursor surface diffusion. Temperature changes as small as 10 K produce noticeable changes in deposit geometry; nanowires appear to deflect and curve toward the substrate because the vertical growth rate decreases. The 3D FEBID naturally ensues from the substrate surface upward, inducing a vertical temperature gradient along the deposit. Simulations, experiments, temperature-controlled studies, and process current monitoring all confirm the cause of nanowire distortion as beam-induced heating while also revealing the rate-determining physics governing the final deposit shape.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article