Your browser doesn't support javascript.
loading
Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification.
Wang, Qing; Zou, Liyuan; Yang, Xiaohai; Liu, Xiaofeng; Nie, Wenyan; Zheng, Yan; Cheng, Quan; Wang, Kemin.
Afiliação
  • Wang Q; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
  • Zou L; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
  • Yang X; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China. Electronic address: yangxiaohai@hnu.edu.cn.
  • Liu X; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
  • Nie W; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
  • Zheng Y; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
  • Cheng Q; Department of Chemistry, University of California, Riverside, CA, 92521, United States.
  • Wang K; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China. Electronic address: kmwang@hnu.edu.cn.
Biosens Bioelectron ; 135: 129-136, 2019 Jun 15.
Article em En | MEDLINE | ID: mdl-31004923
ABSTRACT
Sensitive detection of cancerous exosomes is critical to early diseases diagnosis and prognosis. Herein, a sensitive aptasensor was demonstrated for exosomes detection by surface plasmon resonance (SPR) with dual gold nanoparticle (AuNP)-assisted signal amplification. Dual nanoparticle amplification was achieved by controlled hybridization attachment of AuNPs resulting from electronic coupling between the Au film and AuNPs, as well as coupling effects in plasmonic nanostructures. By blocking the Au film surface with 11-Mercapto-1 -undecanol (MCU), nonspecific adsorption of AuNPs onto the SPR chip surface was suppressed and regeneration of the SPR sensor was realized. This method was highly sensitive and we have achieved the limit of detection (LOD) down to 5 × 103 exosomes/mL, which showed a 104-fold improvement in LOD compared to commercial ELISA. Moreover, the SPR sensor had the capability to differentiate the exosomes secreted by MCF-7 breast cancer cells and MCF-10A normal breast cells. Furthermore, the SPR sensor could effectively detect the exosomes in 30% fetal bovine serum. The work provides a sensitive and efficient quantification approach to detect cancerous exosomes and offers an avenue toward future diagnosis and comprehensive studies of exosomes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ressonância de Plasmônio de Superfície / Exossomos Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ressonância de Plasmônio de Superfície / Exossomos Idioma: En Ano de publicação: 2019 Tipo de documento: Article