Your browser doesn't support javascript.
loading
Comprehensive study of thiopurine methyltransferase genotype, phenotype, and genotype-phenotype discrepancies in Sweden.
Zimdahl Kahlin, Anna; Helander, Sara; Skoglund, Karin; Söderkvist, Peter; Mårtensson, Lars-Göran; Appell, Malin Lindqvist.
Afiliação
  • Zimdahl Kahlin A; Division of Drug Research, Department of Medical and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden.
  • Helander S; Division of Drug Research, Department of Medical and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden.
  • Skoglund K; Division of Drug Research, Department of Medical and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden.
  • Söderkvist P; Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
  • Mårtensson LG; Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
  • Appell ML; Division of Drug Research, Department of Medical and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden. Electronic address: malin.lindqvist.appell@liu.se.
Biochem Pharmacol ; 164: 263-272, 2019 06.
Article em En | MEDLINE | ID: mdl-31005613
ABSTRACT
Thiopurines are widely used in the treatment of leukemia and inflammatory bowel diseases. Thiopurine metabolism varies among individuals because of differences in the polymorphic enzyme thiopurine methyltransferase (TPMT, EC 2.1.1.67), and to avoid severe adverse reactions caused by incorrect dosing it is recommended that the patient's TPMT status be determined before the start of thiopurine treatment. This study describes the concordance between genotyping for common TPMT alleles and phenotyping in a Swedish cohort of 12,663 patients sampled before or during thiopurine treatment. The concordance between TPMT genotype and enzyme activity was 94.5%. Compared to the genotype, the first measurement of TPMT enzyme activity was lower than expected for 4.6% of the patients. Sequencing of all coding regions of the TPMT gene in genotype/phenotype discrepant individuals led to the identification of rare and novel TPMT alleles. Fifteen individuals (0.1%) with rare or novel genotypes were identified, and three TPMT alleles (TPMT*42, *43, and *44) are characterized here for the first time. These 15 patients would not have been detected as carrying a deviating TPMT genotype if only genotyping of the most common TPMT variants had been performed. This study highlights the benefit of combining TPMT genotype and phenotype determination in routine testing. More accurate dose recommendations can be made, which might decrease the number of adverse reactions and treatment failures during thiopurine treatment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Farmacogenética / Fenótipo / Polimorfismo de Nucleotídeo Único / Estudos de Associação Genética / Genótipo / Metiltransferases Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Farmacogenética / Fenótipo / Polimorfismo de Nucleotídeo Único / Estudos de Associação Genética / Genótipo / Metiltransferases Idioma: En Ano de publicação: 2019 Tipo de documento: Article