Your browser doesn't support javascript.
loading
Strigolactones Promote Leaf Elongation in Tall Fescue through Upregulation of Cell Cycle Genes and Downregulation of Auxin Transport Genes in Tall Fescue under Different Temperature Regimes.
Hu, Qiannan; Zhang, Shuoxin; Huang, Bingru.
Afiliação
  • Hu Q; College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China. qnanhu@gmail.com.
  • Zhang S; Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA. qnanhu@gmail.com.
  • Huang B; College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China. sxzhang@nwafu.edu.cn.
Int J Mol Sci ; 20(8)2019 Apr 13.
Article em En | MEDLINE | ID: mdl-31013928
ABSTRACT
Strigolactones (SLs) have recently been shown to play roles in modulating plant architecture and improving plant tolerance to multiple stresses, but the underlying mechanisms for SLs regulating leaf elongation and the influence by air temperature are still unknown. This study aimed to investigate the effects of SLs on leaf elongation in tall fescue (Festuca arundinacea, cv. 'Kentucky-31') under different temperature regimes, and to determine the interactions of SLs and auxin in the regulation of leaf growth. Tall fescue plants were treated with GR24 (synthetic analog of SLs), naphthaleneacetic acid (NAA, synthetic analog), or N-1-naphthylphthalamic acid (NPA, auxin transport inhibitor) (individually and combined) under normal temperature (22/18 °C) and high-temperature conditions (35/30 °C) in controlled-environment growth chambers. Exogenous application of GR24 stimulated leaf elongation and mitigated the heat inhibition of leaf growth in tall fescue. GR24-induced leaf elongation was associated with an increase in cell numbers, upregulated expression of cell-cycle-related genes, and downregulated expression of auxin transport-related genes in elongating leaves. The results suggest that SLs enhance leaf elongation by stimulating cell division and interference with auxin transport in tall fescue.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Folhas de Planta / Genes cdc / Regulação da Expressão Gênica de Plantas / Festuca / Lactonas Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Folhas de Planta / Genes cdc / Regulação da Expressão Gênica de Plantas / Festuca / Lactonas Idioma: En Ano de publicação: 2019 Tipo de documento: Article