Your browser doesn't support javascript.
loading
Fine and ultrafine particle removal efficiency of new residential HVAC filters.
Fazli, Torkan; Zeng, Yicheng; Stephens, Brent.
Afiliação
  • Fazli T; Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, Illinois.
  • Zeng Y; Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, Illinois.
  • Stephens B; Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, Illinois.
Indoor Air ; 29(4): 656-669, 2019 07.
Article em En | MEDLINE | ID: mdl-31077624
ABSTRACT
Particle air filters used in central residential forced-air systems are most commonly evaluated for their size-resolved removal efficiency for particles 0.3-10 µm using laboratory tests. Little information exists on the removal efficiency of commercially available residential filters for particles smaller than 0.3 µm or for integral measures of mass-based aerosol concentrations (eg, PM2.5 ) or total number concentrations (eg, ultrafine particles, or UFPs) that are commonly used in regulatory monitoring and building measurements. Here, we measure the size-resolved removal efficiency of 50 new commercially available residential HVAC filters installed in a recirculating central air-handling unit in an unoccupied apartment unit using alternating upstream/downstream measurements with incense and NaCl as particle sources. Size-resolved removal efficiencies are then used to estimate integral measures of PM2.5 and total UFP removal efficiency for the filters assuming they are challenged by 201 residential indoor particle size distributions (PSDs) gathered from the literature. Total UFP and PM2.5 removal efficiencies generally increased with manufacturer-reported filter ratings and with filter thickness, albeit with numerous exceptions. PM2.5 removal efficiencies were more influenced by the assumption for indoor PSD than total UFP removal efficiencies. Filters with the same ratings but from different manufacturers often had different removal efficiencies for PM2.5 and total UFPs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluição do Ar em Ambientes Fechados / Material Particulado / Filtros de Ar Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluição do Ar em Ambientes Fechados / Material Particulado / Filtros de Ar Idioma: En Ano de publicação: 2019 Tipo de documento: Article