Your browser doesn't support javascript.
loading
Targeted co-delivery of the aldose reductase inhibitor epalrestat and chemotherapeutic doxorubicin via a redox-sensitive prodrug approach promotes synergistic tumor suppression.
Banala, Venkatesh Teja; Urandur, Sandeep; Sharma, Shweta; Sharma, Madhu; Shukla, Ravi P; Marwaha, Disha; Gautam, Shalini; Dwivedi, Monika; Mishra, Prabhat Ranjan.
Afiliação
  • Banala VT; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India. prabhat_mishra@cdri.res.in mishrapr@hotmail.com.
Biomater Sci ; 7(7): 2889-2906, 2019 Jun 25.
Article em En | MEDLINE | ID: mdl-31086900
Rapidly growing evidence suggests a strong dependence of a polyol pathway enzyme Aldose Reductase (AR) in cancer progression and invasion. Thus, inhibiting the AR through therapeutic inhibitors has a potential application in cancer treatment. Epalrestat (EPR) is the only marketed AR inhibitor with proven safety and efficacy in the management of complications like diabetic neuropathy. However, its short half-life and highly hydrophobic nature restrict its use as an anticancer agent. In the present study, we first developed a redox-sensitive prodrug of EPR by conjugating Tocopherol Polyethylene Glycol Succinate (TPGS) which can form a self-assembled micellar prodrug (EPR-SS-TPPGS). Subsequently, to achieve synergistic chemotherapeutic efficacy Doxorubicin (Dox) was co-loaded into the EPR-SS-TPGS micelles where the system is disrupted in a tumor redox environment and co-delivers Dox and EPR in a ratiometric manner. We then employed TPGS conjugated vitamin-B6 as a targeting moiety and prepared the mixed micelles to facilitate VTC receptor-mediated uptake. The encapsulation of Dox and EPR with the developed prodrug approach showed significant synergies with increased intracellular accumulation and redox triggered release in MDA-MB-231 and 4T1 cell lines leading to superior cell cycle arrest, mitochondrial membrane potential, and apoptosis. Prolonged circulation half-life and tumor site bioavailability were achieved for both the drugs with the developed approach. Surprisingly, EPR and Dox combination significantly down-regulated the CD44 receptor expression which is the main contributing factor of tumor metastasis. Furthermore, in vivo evaluation demonstrated a significant reduction in Dox-induced cardiotoxicity. In summary, this nanoencapsulation paradigm of AR inhibitors with chemotherapeutic agents lays the foundation of new opportunities in combination chemotherapy.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Rodanina / Portadores de Fármacos / Pró-Fármacos / Doxorrubicina / Aldeído Redutase / Tiazolidinas Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Rodanina / Portadores de Fármacos / Pró-Fármacos / Doxorrubicina / Aldeído Redutase / Tiazolidinas Idioma: En Ano de publicação: 2019 Tipo de documento: Article