Your browser doesn't support javascript.
loading
Methylotrophs and Methylotroph Populations for Chloromethane Degradation.
Bringel, Françoise; Besaury, Ludovic; Amato, Pierre; Kröber, Eileen; Kolb, Steffen; Keppler, Frank; Vuilleumier, Stéphane; Nadalig, Thierry.
Afiliação
  • Bringel F; Université de Strasbourg UMR 7156 UNISTRA CNRS, Laboratory of Molecular Genetics, Genomics, Microbiology (GMGM), Strasbourg, France.
  • Besaury L; Université de Reims Champagne-Ardenne, Chaire AFERE, INRA, FARE UMR A614, Reims, France.
  • Amato P; Institut de Chimie de Clermont-Ferrand (ICCF), UMR6296 CNRS-UCA-Sigma, Clermont-Ferrand, France.
  • Kröber E; Institute of Landscape Biogeochemistry - Leibniz Centre for Agricultural Landscape Research - ZALF, Müncheberg, Germany.
  • Kolb S; Institute of Landscape Biogeochemistry - Leibniz Centre for Agricultural Landscape Research - ZALF, Müncheberg, Germany.
  • Keppler F; Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany, and Heidelberg Center for the Environment HCE, Heidelberg University, Heidelberg, Germany.
  • Vuilleumier S; Université de Strasbourg UMR 7156 UNISTRA CNRS, Laboratory of Molecular Genetics, Genomics, Microbiology (GMGM), Strasbourg, France.
  • Nadalig T; Université de Strasbourg UMR 7156 UNISTRA CNRS, Laboratory of Molecular Genetics, Genomics, Microbiology (GMGM), Strasbourg, France.
Curr Issues Mol Biol ; 33: 149-172, 2019.
Article em En | MEDLINE | ID: mdl-31166190
Chloromethane is a halogenated volatile organic compound, produced in large quantities by terrestrial vegetation. After its release to the troposphere and transport to the stratosphere, its photolysis contributes to the degradation of stratospheric ozone. A better knowledge of chloromethane sources (production) and sinks (degradation) is a prerequisite to estimate its atmospheric budget in the context of global warming. The degradation of chloromethane by methylotrophic communities in terrestrial environments is a major underestimated chloromethane sink. Methylotrophs isolated from soils, marine environments and more recently from the phyllosphere have been grown under laboratory conditions using chloromethane as the sole carbon source. In addition to anaerobes that degrade chloromethane, the majority of cultivated strains were isolated in aerobiosis for their ability to use chloromethane as sole carbon and energy source. Among those, the Proteobacterium Methylobacterium (recently reclassified as Methylorubrum) harbours the only characterisized 'chloromethane utilization' (cmu) pathway, so far. This pathway is not representative of chloromethane-utilizing populations in the environment as cmu genes are rare in metagenomes. Recently, combined 'omics' biological approaches with chloromethane carbon and hydrogen stable isotope fractionation measurements in microcosms, indicated that microorganisms in soils and the phyllosphere (plant aerial parts) represent major sinks of chloromethane in contrast to more recently recognized microbe-inhabited environments, such as clouds. Cultivated chloromethane-degraders lacking the cmu genes display a singular isotope fractionation signature of chloromethane. Moreover, 13CH3Cl labelling of active methylotrophic communities by stable isotope probing in soils identify taxa that differ from the taxa known for chloromethane degradation. These observations suggest that new biomarkers for detecting active microbial chloromethane-utilizers in the environment are needed to assess the contribution of microorganisms to the global chloromethane cycle.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteobactérias / Metanol / Metabolismo Energético / Cloreto de Metila Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteobactérias / Metanol / Metabolismo Energético / Cloreto de Metila Idioma: En Ano de publicação: 2019 Tipo de documento: Article