Your browser doesn't support javascript.
loading
Depairing Current at High Magnetic Fields in Vortex-Free High-Temperature Superconducting Nanowires.
Rouco, Victor; Navau, Carles; Del-Valle, Nuria; Massarotti, Davide; Papari, Gian Paolo; Stornaiuolo, Daniela; Obradors, Xavier; Puig, Teresa; Tafuri, Francesco; Sanchez, Alvaro; Palau, Anna.
Afiliação
  • Rouco V; Dipartimento di Fisica , Universita degli Studi di Napoli Federico II , 80126 Napoli , Italy.
  • Navau C; Departament de Fisica , Universitat Autonoma de Barcelona , 08193 Bellaterra , Catalonia , Spain.
  • Del-Valle N; Departament de Fisica , Universitat Autonoma de Barcelona , 08193 Bellaterra , Catalonia , Spain.
  • Massarotti D; Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione , Università degli Studi di Napoli Federico II , 80125 Napoli , Italy.
  • Papari GP; Dipartimento di Fisica , Universita degli Studi di Napoli Federico II , 80126 Napoli , Italy.
  • Stornaiuolo D; Dipartimento di Fisica , Universita degli Studi di Napoli Federico II , 80126 Napoli , Italy.
  • Obradors X; Insitut de Ciencia de Materials de Barcelona , CSIC, Campus de la UAB, 08193 Bellaterra , Catalonia , Spain.
  • Puig T; Insitut de Ciencia de Materials de Barcelona , CSIC, Campus de la UAB, 08193 Bellaterra , Catalonia , Spain.
  • Tafuri F; Dipartimento di Fisica , Universita degli Studi di Napoli Federico II , 80126 Napoli , Italy.
  • Sanchez A; Departament de Fisica , Universitat Autonoma de Barcelona , 08193 Bellaterra , Catalonia , Spain.
  • Palau A; Insitut de Ciencia de Materials de Barcelona , CSIC, Campus de la UAB, 08193 Bellaterra , Catalonia , Spain.
Nano Lett ; 2019 Jun 03.
Article em En | MEDLINE | ID: mdl-31185574
Superconductors are essential in many present and future technologies, from large-scale devices for medical imaging, accelerators, or fusion experiments to ultra-low-power superconducting electronics. However, their potential applicability, and particularly that of high-temperature superconductors (HTS), is severely affected by limited performances at large magnetic fields and high temperatures, where their use is most needed. One of the main reasons for these limitations is the presence of quantized vortices, whose movements result in losses, internal noise, and reduced performances. The conventional strategy to overcome the flow of vortices is to pin them along artificial defects. Here, we theoretically and experimentally demonstrate that critical-current density in high-temperature superconductors can reach unprecedented high values at high fields and temperatures by preventing vortex entry. By tailoring the geometry, that is, reducing the width, W, of nanowire-patterned HTS films, the range of the Meissner state, for which no vortices are present, is extended up to very large applied field values, on the order of ∼1 T. Current densities on the order of the depairing current can be sustained under high fields for a wide range of temperatures. Results may be relevant both for devising new conductors carrying depairing-current values at high temperatures and large magnetic fields and for reducing flux noise in sensors and quantum systems.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article