Estimating biological accuracy of DSM for attention deficit/hyperactivity disorder based on multivariate analysis for small samples.
PeerJ
; 7: e7074, 2019.
Article
em En
| MEDLINE
| ID: mdl-31223531
OBJECTIVE: To estimate whether the "Diagnostic and Statistical Manual of Mental Disorders" (DSM) is biologically accurate for the diagnosis of Attention Deficit/ Hyperactivity Disorder (ADHD) using a biological-based classifier built by a special method of multivariate analysis of a large dataset of a small sample (much more variables than subjects), holding neurophysiological, behavioral, and psychological variables. METHODS: Twenty typically developing boys and 19 boys diagnosed with ADHD, aged 10-13 years, were examined using the Attentional Network Test (ANT) with recordings of event-related potentials (ERPs). From 774 variables, a reduced number of latent variables (LVs) were extracted with a clustering of variables method (CLV), for further reclassification of subjects using the k-means method. This approach allowed a multivariate analysis to be applied to a significantly larger number of variables than the number of cases. RESULTS: From datasets including ERPs from the mid-frontal, mid-parietal, right frontal, and central scalp areas, we found 82% of agreement between DSM and biological-based classifications. The kappa index between DSM and behavioral/psychological/neurophysiological data was 0.75, which is regarded as a "substantial level of agreement". DISCUSSION: The CLV is a useful method for multivariate analysis of datasets with much less subjects than variables. In this study, a correlation is found between the biological-based classifier and the DSM outputs for the classification of subjects as either ADHD or not. This result suggests that DSM clinically describes a biological condition, supporting its validity for ADHD diagnostics.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article