Your browser doesn't support javascript.
loading
Exosites in Hypervariable Loops of ADAMTS Spacer Domains control Substrate Recognition and Proteolysis.
Santamaria, Salvatore; Yamamoto, Kazuhiro; Teraz-Orosz, Adrienn; Koch, Christopher; Apte, Suneel S; de Groot, Rens; Lane, David A; Ahnström, Josefin.
Afiliação
  • Santamaria S; From the Centre for Haematology, Imperial College London, Du Cane Road, W12 0NN, London, UK. s.santamaria@imperial.ac.uk.
  • Yamamoto K; Institute of Ageing and Chronic Disease, William Henry Duncan Building, University of Liverpool, Liverpool, UK.
  • Teraz-Orosz A; From the Centre for Haematology, Imperial College London, Du Cane Road, W12 0NN, London, UK.
  • Koch C; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
  • Apte SS; Department of Chemistry, Cleveland State University, Cleveland, OH, USA.
  • de Groot R; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
  • Lane DA; From the Centre for Haematology, Imperial College London, Du Cane Road, W12 0NN, London, UK.
  • Ahnström J; From the Centre for Haematology, Imperial College London, Du Cane Road, W12 0NN, London, UK.
Sci Rep ; 9(1): 10914, 2019 07 29.
Article em En | MEDLINE | ID: mdl-31358852
ABSTRACT
ADAMTS (A Disintegrin-like and Metalloproteinase domain with Thrombospondin type 1 Motif)-1, -4 and -5 share the abilities to cleave large aggregating proteoglycans including versican and aggrecan. These activities are highly relevant to cardiovascular disease and osteoarthritis and during development. Here, using purified recombinant ADAMTS-1, -4 and -5, we quantify, compare, and define the molecular basis of their versicanase activity. A novel sandwich-ELISA detecting the major versican cleavage fragment was used to determine, for the first time, kinetic constants for versican proteolysis. ADAMTS-5 (kcat/Km 35 × 105 M-1 s-1) is a more potent (~18-fold) versicanase than ADAMTS-4 (kcat/Km 1.86 × 105 M-1 sec-1), whereas ADAMTS-1 versicanase activity is comparatively low. Deletion of the spacer domain reduced versicanase activity of ADAMTS-5 19-fold and that of ADAMTS-4 167-fold. Co-deletion of the ADAMTS-5 cysteine-rich domain further reduced versicanase activity to a total 153-fold reduction. Substitution of two hypervariable loops in the spacer domain of ADAMTS-5 (residues 739-744 and 837-844) and ADAMTS-4 (residues 717-724 and 788-795) with those of ADAMTS-13, which does not cleave proteoglycans, caused spacer-dependent reductions in versicanase activities. Our results demonstrate that these loops contain exosites critical for interaction with and processing of versican. The hypervariable loops of ADAMTS-5 are shown to be important also for its aggrecanase activity. Together with previous work on ADAMTS-13 our results suggest that the spacer domain hypervariable loops may exercise significant control of ADAMTS proteolytic activity as a general principle. Identification of specific exosites also provides targets for selective inhibitors.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Versicanas / Proteína ADAMTS1 / Proteína ADAMTS4 / Proteína ADAMTS5 Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Versicanas / Proteína ADAMTS1 / Proteína ADAMTS4 / Proteína ADAMTS5 Idioma: En Ano de publicação: 2019 Tipo de documento: Article