Your browser doesn't support javascript.
loading
Towards A Microbead Occlusion Model of Glaucoma for a Non-Human Primate.
Lambert, Wendi S; Carlson, Brian J; Ghose, Purnima; Vest, Victoria D; Yao, Vincent; Calkins, David J.
Afiliação
  • Lambert WS; The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-0654, USA.
  • Carlson BJ; The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-0654, USA.
  • Ghose P; The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-0654, USA.
  • Vest VD; The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-0654, USA.
  • Yao V; The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-0654, USA.
  • Calkins DJ; The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-0654, USA. david.j.calkins@vumc.org.
Sci Rep ; 9(1): 11572, 2019 08 09.
Article em En | MEDLINE | ID: mdl-31399621
ABSTRACT
Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease causes vision loss through the degeneration of retinal ganglion cell neurons and their axons in the optic nerve. Using an inducible model of glaucoma, we elevated IOP in the squirrel monkey (Saimiri boliviensis) using intracameral injection of 35 µm polystyrene microbeads and measured common pathogenic outcomes in the optic projection. A 42% elevation in IOP over 28 weeks reduced anterograde transport of fluorescently-labeled cholera toxin beta from retina to the lateral geniculate nucleus (60% decrease), and to the superior colliculus (49% decrease). Pressure also reduced survival of ganglion cellaxons in the optic nerve by 22%. The same elevation caused upregulation of proteins associated with glaucomatous neurodegeneration in the retina and optic nerve, including complement 1q, interleukin 6, and brain-derived neurotrophic factor. That axon degeneration in the nerve lagged deficits in anterograde transport is consistent with progression in rodent models, while the observed protein changes also occur in tissue from human glaucoma patients. Thus, microbead occlusion in a non-human primate with a visual system similar to our own represents an attractive model to investigate neurodegenerative mechanisms and therapeutic interventions for glaucoma.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saimiri / Glaucoma / Modelos Animais de Doenças / Pressão Intraocular Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saimiri / Glaucoma / Modelos Animais de Doenças / Pressão Intraocular Idioma: En Ano de publicação: 2019 Tipo de documento: Article