Your browser doesn't support javascript.
loading
A Biophysical Model for Curvature-Guided Cell Migration.
Vassaux, Maxime; Pieuchot, Laurent; Anselme, Karine; Bigerelle, Maxence; Milan, Jean-Louis.
Afiliação
  • Vassaux M; Aix Marseille Univ, CNRS, ISM, Marseille, France; Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, Marseille, France. Electronic address: m.vassaux@ucl.ac.uk.
  • Pieuchot L; Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, France; Université de Strasbourg, Strasbourg, France. Electronic address: laurent.pieuchot@uha.fr.
  • Anselme K; Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, France; Université de Strasbourg, Strasbourg, France.
  • Bigerelle M; Université de Valenciennes et du Hainaut Cambrésis, Laboratoire d'Automatique, de Mécanique et d'Informatique industrielle et Humaine (LAMIH), UMR-CNRS 8201, Le Mont Houy, Valenciennes, France.
  • Milan JL; Aix Marseille Univ, CNRS, ISM, Marseille, France; Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, Marseille, France.
Biophys J ; 117(6): 1136-1144, 2019 09 17.
Article em En | MEDLINE | ID: mdl-31400917
ABSTRACT
The latest experiments have shown that adherent cells can migrate according to cell-scale curvature variations via a process called curvotaxis. Despite identification of key cellular factors, a clear understanding of the mechanism is lacking. We employ a mechanical model featuring a detailed description of the cytoskeleton filament networks, the viscous cytosol, the cell adhesion dynamics, and the nucleus. We simulate cell adhesion and migration on sinusoidal substrates. We show that cell adhesion on three-dimensional curvatures induces a gradient of pressure inside the cell that triggers the internal motion of the nucleus. We propose that the resulting out-of-equilibrium position of the nucleus alters cell migration directionality, leading to cell motility toward concave regions of the substrate, resulting in lower potential energy states. Altogether, we propose a simple mechanism explaining how intracellular mechanics enable the cells to react to substratum curvature, induce a deterministic cell polarization, and break down cells basic persistent random walk, which correlates with latest experimental evidences.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Movimento Celular / Forma Celular / Fenômenos Biofísicos / Modelos Biológicos Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Movimento Celular / Forma Celular / Fenômenos Biofísicos / Modelos Biológicos Idioma: En Ano de publicação: 2019 Tipo de documento: Article