Your browser doesn't support javascript.
loading
RNA-Binding Protein IGF2BP2/IMP2 is a Critical Maternal Activator in Early Zygotic Genome Activation.
Liu, Hong-Bin; Muhammad, Tahir; Guo, Yueshuai; Li, Meng-Jing; Sha, Qian-Qian; Zhang, Chuan-Xin; Liu, Hui; Zhao, Shi-Gang; Zhao, Han; Zhang, Hao; Du, Yan-Zhi; Sun, Kang; Liu, Kui; Lu, Gang; Guo, Xue-Jiang; Sha, Jiahao; Fan, Heng-Yu; Gao, Fei; Chen, Zi-Jiang.
Afiliação
  • Liu HB; Center for Reproductive Medicine Shandong University Jinan 250001 China.
  • Muhammad T; National Research Center for Assisted Reproductive Technology and Reproductive Genetics Shandong University Jinan 250001 China.
  • Guo Y; The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education Jinan 250001 China.
  • Li MJ; CUHK-SDU Joint Laboratory on Reproductive Genetics School of Biomedical Sciences The Chinese University of Hong Kong Hong Kong China.
  • Sha QQ; Center for Reproductive Medicine Shandong University Jinan 250001 China.
  • Zhang CX; National Research Center for Assisted Reproductive Technology and Reproductive Genetics Shandong University Jinan 250001 China.
  • Liu H; The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education Jinan 250001 China.
  • Zhao SG; State Key Laboratory of Reproductive Medicine Nanjing Medical University Nanjing 210029 China.
  • Zhao H; Center for Reproductive Medicine Shandong University Jinan 250001 China.
  • Zhang H; National Research Center for Assisted Reproductive Technology and Reproductive Genetics Shandong University Jinan 250001 China.
  • Du YZ; The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education Jinan 250001 China.
  • Sun K; Life Sciences Institute and Innovation Center for Cell Signaling Network Zhejiang University Hangzhou 310058 China.
  • Liu K; Center for Reproductive Medicine Shandong University Jinan 250001 China.
  • Lu G; National Research Center for Assisted Reproductive Technology and Reproductive Genetics Shandong University Jinan 250001 China.
  • Guo XJ; The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education Jinan 250001 China.
  • Sha J; Center for Reproductive Medicine Shandong University Jinan 250001 China.
  • Fan HY; National Research Center for Assisted Reproductive Technology and Reproductive Genetics Shandong University Jinan 250001 China.
  • Gao F; The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education Jinan 250001 China.
  • Chen ZJ; Center for Reproductive Medicine Shandong University Jinan 250001 China.
Adv Sci (Weinh) ; 6(15): 1900295, 2019 Aug 07.
Article em En | MEDLINE | ID: mdl-31406667
ABSTRACT
A number of genes involved in zygotic genome activation (ZGA) have been identified, but the RNA-binding maternal factors that are directly related to ZGA in mice remain unclear. The present study shows that maternal deletion of Igf  2bp2 (also commonly known as Imp2) in mouse embryos causes early embryonic developmental arrest in vitro at the 2-cell-stage. Transcriptomics and proteomics analyses of 2-cell-stage embryos in mice reveal that deletion of IMP2 downregulates the expression of Ccar1 and Rps14, both of which are required for early embryonic developmental competence. IGF2, a target of IMP2, when added in culture media, increases the proportion of wild-type embryos that develop successfully to the blastocyst stage from 29% in untreated controls to 65% (50 × 10-9 m IGF2). Furthermore, in an experiment related to embryo transfer, foster mothers receiving IGF2-treated embryos deliver more pups per female than females who receive untreated control embryos. In clinically derived human oocytes, the addition of IGF2 to the culture media significantly enhances the proportion of embryos that develop successfully. Collectively, the findings demonstrate that IMP2 is essential for the regulation and activation of genes known to be involved in ZGA and reveal the potential embryonic development-related utility of IGF2 for animal biotechnology and for assisted reproduction in humans.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article