Your browser doesn't support javascript.
loading
Usefulness of positron emission tomography for differentiating gliomas according to the 2016 World Health Organization classification of tumors of the central nervous system.
Takei, Hiroaki; Shinoda, Jun; Ikuta, Soko; Maruyama, Takashi; Muragaki, Yoshihiro; Kawasaki, Tomohiro; Ikegame, Yuka; Okada, Makoto; Ito, Takeshi; Asano, Yoshitaka; Yokoyama, Kazutoshi; Nakayama, Noriyuki; Yano, Hirohito; Iwama, Toru.
Afiliação
  • Takei H; 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu.
  • Shinoda J; 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and.
  • Ikuta S; 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu.
  • Maruyama T; 2Departments of Clinical Brain Sciences and.
  • Muragaki Y; 3Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan.
  • Kawasaki T; 3Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan.
  • Ikegame Y; 3Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan.
  • Okada M; 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu.
  • Ito T; 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and.
  • Asano Y; 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu.
  • Yokoyama K; 2Departments of Clinical Brain Sciences and.
  • Nakayama N; 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu.
  • Yano H; 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu.
  • Iwama T; 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu.
J Neurosurg ; : 1-10, 2019 Aug 16.
Article em En | MEDLINE | ID: mdl-31419796
OBJECTIVE: Positron emission tomography (PET) is important in the noninvasive diagnostic imaging of gliomas. There are many PET studies on glioma diagnosis based on the 2007 WHO classification; however, there are no studies on glioma diagnosis using the new classification (the 2016 WHO classification). Here, the authors investigated the relationship between uptake of 11C-methionine (MET), 11C-choline (CHO), and 18F-fluorodeoxyglucose (FDG) on PET imaging and isocitrate dehydrogenase (IDH) status (wild-type [IDH-wt] or mutant [IDH-mut]) in astrocytic and oligodendroglial tumors according to the 2016 WHO classification. METHODS: In total, 105 patients with newly diagnosed cerebral gliomas (6 diffuse astrocytomas [DAs] with IDH-wt, 6 DAs with IDH-mut, 7 anaplastic astrocytomas [AAs] with IDH-wt, 24 AAs with IDH-mut, 26 glioblastomas [GBMs] with IDH-wt, 5 GBMs with IDH-mut, 19 oligodendrogliomas [ODs], and 12 anaplastic oligodendrogliomas [AOs]) were included. All OD and AO patients had both IDH-mut and 1p/19q codeletion. The maximum standardized uptake value (SUV) of the tumor/mean SUV of normal cortex (T/N) ratios for MET, CHO, and FDG were calculated, and the mean T/N ratios of DA, AA, and GBM with IDH-wt and IDH-mut were compared. The diagnostic accuracy for distinguishing gliomas with IDH-wt from those with IDH-mut was assessed using receiver operating characteristic (ROC) curve analysis of the mean T/N ratios for the 3 PET tracers. RESULTS: There were significant differences in the mean T/N ratios for all 3 PET tracers between the IDH-wt and IDH-mut groups of all histological classifications (p < 0.001). Among the 27 gliomas with mean T/N ratios higher than the cutoff values for all 3 PET tracers, 23 (85.2%) were classified into the IDH-wt group using ROC analysis. In DA, there were no significant differences in the T/N ratios for MET, CHO, and FDG between the IDH-wt and IDH-mut groups. In AA, the mean T/N ratios of all 3 PET tracers in the IDH-wt group were significantly higher than those in the IDH-mut group (p < 0.01). In GBM, the mean T/N ratio in the IDH-wt group was significantly higher than that in the IDH-mut group for both MET (p = 0.034) and CHO (p = 0.01). However, there was no significant difference in the ratio for FDG. CONCLUSIONS: PET imaging using MET, CHO, and FDG was suggested to be informative for preoperatively differentiating gliomas according to the 2016 WHO classification, particularly for differentiating IDH-wt and IDH-mut tumors.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article