Your browser doesn't support javascript.
loading
Deep learning on butterfly phenotypes tests evolution's oldest mathematical model.
Hoyal Cuthill, Jennifer F; Guttenberg, Nicholas; Ledger, Sophie; Crowther, Robyn; Huertas, Blanca.
Afiliação
  • Hoyal Cuthill JF; Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
  • Guttenberg N; Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK.
  • Ledger S; Institute of Analytics and Data Science and School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
  • Crowther R; Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
  • Huertas B; Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
Sci Adv ; 5(8): eaaw4967, 2019 08.
Article em En | MEDLINE | ID: mdl-31453326
ABSTRACT
Traditional anatomical analyses captured only a fraction of real phenomic information. Here, we apply deep learning to quantify total phenotypic similarity across 2468 butterfly photographs, covering 38 subspecies from the polymorphic mimicry complex of Heliconius erato and Heliconius melpomene. Euclidean phenotypic distances, calculated using a deep convolutional triplet network, demonstrate significant convergence between interspecies co-mimics. This quantitatively validates a key prediction of Müllerian mimicry theory, evolutionary biology's oldest mathematical model. Phenotypic neighbor-joining trees are significantly correlated with wing pattern gene phylogenies, demonstrating objective, phylogenetically informative phenome capture. Comparative analyses indicate frequency-dependent mutual convergence with coevolutionary exchange of wing pattern features. Therefore, phenotypic analysis supports reciprocal coevolution, predicted by classical mimicry theory but since disputed, and reveals mutual convergence as an intrinsic generator for the unexpected diversity of Müllerian mimicry. This demonstrates that deep learning can generate phenomic spatial embeddings, which enable quantitative tests of evolutionary hypotheses previously only testable subjectively.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Asas de Animais / Borboletas / Mimetismo Biológico Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Asas de Animais / Borboletas / Mimetismo Biológico Idioma: En Ano de publicação: 2019 Tipo de documento: Article