Removal of phosphate from aqueous solution using MgO-modified magnetic biochar derived from anaerobic digestion residue.
J Environ Manage
; 250: 109438, 2019 Nov 15.
Article
em En
| MEDLINE
| ID: mdl-31479938
A novel MgO-modified magnetic biochar (MgO@MBC) was made by chemical co-precipitation of Mg2+/Fe3+ on anaerobic digestion residue (ADR) and subsequently pyrolyzing at different temperatures. MgO@MBC was used for phosphate recovery from aqueous solution. The physicochemical properties of MgO@MBC were comprehensively investigated using TEM-EDS, FT-IR, XRD, VSM, N2 adsorption-desorption and TGA. Results showed that MgO/γ-Fe2O3 nanoparticles were successfully deposited onto the surface of BC. The effects of reaction temperature, initial solution pH, MgO@MBC dosage, coexisting anions and phosphate concentration on the removal of phosphate by MgO@MBC were researched. Additionally, the adsorption process of phosphate onto MgO@MBC was well described by the pseudo second-order and pseudo first-order models, which indicated a chemisorption and physisorption process. Besides, the maximum adsorption capacity of MgO@MBC for phosphate by the Langmuir model were 149.25â¯mg/g at 25⯰C. Moreover, the thermodynamic study suggested that the adsorption of phosphate onto MgO@MBC was a spontaneous and endothermic process. The adsorption mechanisms including physical absorption, surface electrostatic attraction, surface complexation and precipitation were revealed. It could be concluded that MgO@MBC exhibited high removal efficiency of phosphate and excellent magnetic property for the recovery. MgO@MBC could be utilized as a magnetically recoverable adsorbent to realize phosphate recovery and MgO@MBC after the adsorpion of phosphate could be applied in agricultural production as a fertilizer.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Fosfatos
/
Poluentes Químicos da Água
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article