Your browser doesn't support javascript.
loading
Laser-Induced Nanodroplet Injection and Reconfigurable Double Emulsions with Designed Inner Structures.
Guo, Jin-Kun; Hong, Seung-Ho; Yoon, Hyun-Jin; Babakhanova, Greta; Lavrentovich, Oleg D; Song, Jang-Kun.
Afiliação
  • Guo JK; Department of Electrical and Computer Engineering Sungkyunkwan University Suwon 16419 Republic of Korea.
  • Hong SH; Department of Electrical and Computer Engineering Sungkyunkwan University Suwon 16419 Republic of Korea.
  • Yoon HJ; Department of Electrical and Computer Engineering Sungkyunkwan University Suwon 16419 Republic of Korea.
  • Babakhanova G; Merck Performance Materials Ltd. Pyeongtaek 17956 Republic of Korea.
  • Lavrentovich OD; Advanced Materials and Liquid Crystal Institute Kent State University Kent OH 44242 USA.
  • Song JK; Advanced Materials and Liquid Crystal Institute Kent State University Kent OH 44242 USA.
Adv Sci (Weinh) ; 6(17): 1900785, 2019 Sep 04.
Article em En | MEDLINE | ID: mdl-31508284
Microfabrication of complex double emulsion droplets with controlled substructures, which resemble biological cells, is an important but a highly challenging subject. Here, a new approach is proposed based on laser-induced injection of water nanodroplets into a liquid crystal (LC) drop. In contrast to the conventional top-down microfluidic fabrication, this method employs a series of bottom-up strategies such as nanodroplet injection, spontaneous and assisted coalescence, elastically driven actuation, and self-assembly. Each step is controlled precisely by adjusting the laser beam, interfacial tension, and its gradients, surface anchoring, and elasticity of the LC. Whispering gallery mode illumination is used to monitor the injection of droplets. A broad spectrum of double emulsions with a predesigned hierarchical architecture is fabricated and reconfigured by temperature, laser-induced coalescence, and injection. The proposed bottom-up method to produce customized microemulsions that are responsive to environmental cues can be used in the development of drug delivery systems, biosensors, and functional soft matter microstructures.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article