Your browser doesn't support javascript.
loading
Rechargeable Mg batteries based on a Ag2S conversion cathode with fast solid-state Mg2+ diffusion kinetics.
Zhang, Yujie; Li, Xue; Shen, Jingwei; Chen, Zhongxue; Cao, Shun-An; Li, Ting; Xu, Fei.
Afiliação
  • Zhang Y; Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China. xufei2058@whu.edu.cn.
  • Li X; Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China. xufei2058@whu.edu.cn.
  • Shen J; Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China. xufei2058@whu.edu.cn.
  • Chen Z; Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China. xufei2058@whu.edu.cn.
  • Cao SA; Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China. xufei2058@whu.edu.cn.
  • Li T; Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China. liting@mail.scuec.edu.cn.
  • Xu F; Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China. xufei2058@whu.edu.cn.
Dalton Trans ; 48(38): 14390-14397, 2019 Oct 14.
Article em En | MEDLINE | ID: mdl-31508626
ABSTRACT
Rechargeable Mg batteries are promising candidates for highly safe, large-scale energy storage batteries due to the low-cost and non-dendritic metallic Mg anode. However, exploring high-performance cathodes remains a great challenge blocking their development. Herein, a rechargeable Mg battery is established with a Ag2S conversion cathode, providing a highly reversible capacity of 120 mA h g-1 at 50 mA g-1, a superior rate capability of 70 mA h g-1 at 500 mA g-1, and an outstanding long-term cyclability over 400 cycles. The mechanism was investigated using XRD, TEM and XPS in addition to electrochemical measurements, and indicated a two-stage magnesiation first, Mg2+ intercalation into Ag2S and then a conversion reaction to form metallic Ag0 and MgS. The solid-state Mg2+ diffusion coefficients are as high as 3.6 × 10-9 and 3.1 × 10-10 cm2 s-1 for the intercalation and conversion reactions, respectively, which explains the high performance of the Ag2S cathode. This work provides scientific insights for the selection of a promising conversion cathode by the combination of soft anions and soft transition metal cations.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article