Investigation of Preanalytical Variables Impacting Pathogen Cell-Free DNA in Blood and Urine.
J Clin Microbiol
; 57(11)2019 11.
Article
em En
| MEDLINE
| ID: mdl-31511335
Pathogen cell-free DNA (pcfDNA) in blood and urine is an attractive biomarker; however, the impact of preanalytical factors is not well understood. Blood and urine samples from healthy donors spiked with cfDNA from Mycobacterium tuberculosis, Salmonella enterica, Aspergillus fumigatus, and Epstein-Barr virus (EBV) and samples from tuberculosis patients were used to evaluate the impact of blood collection tube, urine preservative, processing delay, processing method, freezing and thawing, and sample volume on pcfDNA. The PCR cycle threshold (CT ) was used to measure amplifiable cfDNA. In spiked samples, the median CT values for M. tuberculosis, S. enterica, and EBV cfDNA were significantly lower in blood collected in K2EDTA tubes than those in Streck and PAXgene blood collection tubes, and they were was significantly lower in urine preserved with EDTA (EDTA-urine) than in urine preserved with Streck reagent (Streck-urine). Blood and urine samples from TB patients preserved with K2EDTA and Tris-EDTA, respectively, showed significantly lower median M. tuberculosisCT values than with the Streck blood collection tube and Streck urine preservative. Processing delay increased the median pathogen CT values for Streck and PAXgene but not K2EDTA blood samples and for urine preserved with Streck reagent but not EDTA. Double-spin compared with single-spin plasma separation increased the median pathogen CT regardless of blood collection tube. No differences were observed between whole urine and supernatant and between fresh and thawed plasma and urine after 24 weeks at -80°C. Larger plasma and urine volumes in contrived and patient samples showed a significantly lower median M. tuberculosisCT These findings suggest that large-volume single-spin K2EDTA-plasma and EDTA-whole urine with up to a 24-h processing delay may optimize pcfDNA detection.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
DNA Bacteriano
/
DNA Fúngico
/
DNA Viral
/
Ácidos Nucleicos Livres
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article