Clarifying the Mechanism of Copper(II) α-(N)-Heterocyclic Thiosemicarbazone Complexes on DNA Topoisomerase IIα and IIß.
Chem Res Toxicol
; 32(10): 2135-2143, 2019 10 21.
Article
em En
| MEDLINE
| ID: mdl-31512855
Topoisomerase II is a nuclear enzyme involved in the maintenance of DNA and is an effective anticancer drug target. However, several clinical topoisomerase II-targeted agents display significant off-target toxicities and adverse events. Thus, it is important to continue characterizing compounds with activity against topoisomerase II. We previously analyzed α-(N)-heterocyclic thiosemicarbazone copper(II) complexes against human topoisomerase IIα (TOP2A), but humans also express topoisomerase IIß (TOP2B), which has distinct functional roles. Therefore, we examined two α-(N)-heterocyclic thiosemicarbazone copper [Cu(II)] complexes for activity against TOP2B in a purified system. The Cu(II) complexes, Cu(APY-ETSC)Cl and Cu(BZP-ETSC)Cl, were examined using plasmid DNA cleavage, supercoiled DNA relaxation, enzyme inactivation, protein cross-linking, DNA ligation, and ATP hydrolysis assays with TOP2B to determine whether these compounds act similarly against both enzymes. Both of the Cu(II) thiosemicarbazone (Cu-TSC) complexes we tested disrupted the function of TOP2B in a way similar to the effect on TOP2A. In particular, TOP2B DNA cleavage activity is increased in the presence of these compounds, while the relaxation and ATPase activities are inhibited. Further, both Cu-TSCs stabilize the N-terminal DNA clamp of TOP2A and TOP2B and rapidly inactivate TOP2B when the compounds are present before DNA. Our data provide evidence that the Cu-TSC complexes we tested utilize a similar mechanism against both isoforms of the enzyme. This mechanism may involve interaction with the ATPase domain of TOP2A and TOP2B outside of the ATP binding pocket. Additionally, these data support a model of TOP2 function where the ATPase domain communicates with the DNA cleavage/ligation domain.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Compostos Organometálicos
/
Inibidores da Topoisomerase II
/
Proteínas de Ligação a Poli-ADP-Ribose
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article