Your browser doesn't support javascript.
loading
A visually distinguishable light interfering bioresponsive silica nanoparticle hydrogel sensor fabricated through the molecular imprinting technique.
Jinn, Woo Seok; Shin, Moo-Kwang; Kang, Byunghoon; Oh, Seungjae; Moon, Chae-Eun; Mun, Byeonggeol; Ji, Yong Woo; Lee, Hyung Keun; Haam, Seungjoo.
Afiliação
  • Jinn WS; Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea. haam@yonsei.ac.kr.
  • Shin MK; Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea. haam@yonsei.ac.kr.
  • Kang B; BioNanotechnology Research Center, Korea Research Institue of Bioscience and Biotechnology(KRIBB), Daejeon 34141, Republic of Korea.
  • Oh S; Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea.
  • Moon CE; Department of Ophthalmology, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea. SHADIK@yuhs.ac.
  • Mun B; Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea. haam@yonsei.ac.kr.
  • Ji YW; Department of Ophthalmology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea.
  • Lee HK; Department of Ophthalmology, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea. SHADIK@yuhs.ac.
  • Haam S; Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea. haam@yonsei.ac.kr.
J Mater Chem B ; 7(45): 7120-7128, 2019 12 07.
Article em En | MEDLINE | ID: mdl-31602453
ABSTRACT
Methods of the early detection of diseases are based on recognition of the smallest change in the levels of a disease-specific biomarker in body fluids. Among them, monitoring protein concentrations is crucial because most diseases are caused by dysregulated protein levels, rather than DNA or RNA levels. Recent studies have indicated that the proteins in the aqueous humor can be used as biomarkers to predict brain diseases. Therefore, mounting an insertion type sensor on the intraocular lens is a compelling candidate platform for monitoring potential brain disease patients. In particular, molecular reactive sensors that use affinity binding, such as molecularly imprinted hydrogels, allow simple label-free detection, as well as high bio-applicability and biocompatibility. Herein, we describe the fabrication of an optical sensor using a silica nanoparticle conjugated bioresponsive hydrogel to analyze protein biomarkers by measuring light interference in smartphone images. Conformational changes in biotin-conjugated hydrogels were observed through the presence of avidin, as a substitution for a novel biomarker, in interconnecting hydrogel networks. Uniformly arrayed nanoparticles interfered with light differently when the distance between the silica nanoparticles was varied according to target moiety binding. A blue-shift of the reflected light was evident in avidin solutions of up to 100 nM and was induced by shrinkage of the hydrogel. The results indicate that our well-defined, label-free bioresponsive hydrogel demonstrated strong potential to be widely applied as a bioresponsive light interfering hydrogel sensor.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Silício / Hidrogéis / Nanopartículas / Impressão Molecular / Luz Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Silício / Hidrogéis / Nanopartículas / Impressão Molecular / Luz Idioma: En Ano de publicação: 2019 Tipo de documento: Article