Your browser doesn't support javascript.
loading
Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales).
Wang, Hong-Xin; Liu, Huan; Moore, Michael J; Landrein, Sven; Liu, Bing; Zhu, Zhi-Xin; Wang, Hua-Feng.
Afiliação
  • Wang HX; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
  • Liu H; BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
  • Moore MJ; Department of Biology, Oberlin College, Oberlin, OH 44074, USA.
  • Landrein S; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China.
  • Liu B; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China; Sino-African Joint Research Centre, Chinese Academy of Science, Wuhan 430074, China.
  • Zhu ZX; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
  • Wang HF; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China. Electronic address: wanghuafeng2012@foxmail.com.
Mol Phylogenet Evol ; 142: 106641, 2020 01.
Article em En | MEDLINE | ID: mdl-31605813
ABSTRACT
The family Caprifoliaceae s.l. is an asterid angiosperm clade of ca. 960 species, most of which are distributed in temperate regions of the northern hemisphere. Recent studies show that the family comprises seven major clades Linnaeoideae, Zabelia, Morinoideae, Dipsacoideae, Valerianoideae, Caprifolioideae, and Diervilloideae. However, its phylogeny at the subfamily or genus level remains controversial, and the backbone relationships among subfamilies are incompletely resolved. In this study, we utilized complete plastome sequencing to resolve the relationships among the subfamilies of the Caprifoliaceae s.l. and clarify several long-standing controversies. We generated and analyzed plastomes of 48 accessions of Caprifoliaceae s.l., representing 44 species, six subfamilies and one genus. Combined with available Caprifoliaceae s.l. plastomes on GenBank and 12 outgroups, we analyzed a final dataset of 68 accessions. Genome structure was strongly conserved in general, although the boundaries between the Inverted Repeat were found to have contracted across Caprifoliaceae s.l. to exclude rpl2, rps19, and ycf1, all or parts of which are typically present in the IR of most angiosperms. The ndhF gene was found to have been inverted in all plastomes of Adoxaceae. Phylogenomic analyses of 68 complete plastomes yielded a highly supported topology that strongly supported the monophyly of Zabelia and its sister relationship to Morinoideae. Moreover, a clade of Valerianoideae + Dipsacoideae was recovered as sister to a clade of Linnaeoideae + Zabelia + Morinoideae clade, and Heptacodium was sister to remaining Caprifolioideae. The Diervilloideae and Caprifolioideae were successively sister to all other Caprifoliaceae s.l. Major lineages of Caprifoliaceae s.l. were estimated to have diverged from the Upper Cretaceous to the Eocene (50-100 Ma), whereas within-genus diversification was dated to the Oligocene and later, concomitant with global cooling and drying. Our results demonstrate the power of plastid phylogenomics in improving estimates of phylogeny among genera and subfamilies, and provide new insights into plastome evolution across Caprifoliaceae s.l.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plastídeos / Caprifoliaceae Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plastídeos / Caprifoliaceae Idioma: En Ano de publicação: 2020 Tipo de documento: Article