Your browser doesn't support javascript.
loading
Evaluation of Chemical Composition of Two Linseed Varieties as Sources of Health-Beneficial Substances.
Tavarini, Silvia; Castagna, Antonella; Conte, Giuseppe; Foschi, Lara; Sanmartin, Chiara; Incrocci, Luca; Ranieri, Annamaria; Serra, Andrea; Angelini, Luciana G.
Afiliação
  • Tavarini S; Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy. silvia.tavarini@unipi.it.
  • Castagna A; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy. silvia.tavarini@unipi.it.
  • Conte G; Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy. antonella.castagna@unipi.it.
  • Foschi L; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy. antonella.castagna@unipi.it.
  • Sanmartin C; Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy. giuseppe.conte@unipi.it.
  • Incrocci L; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy. giuseppe.conte@unipi.it.
  • Ranieri A; Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy. lara.foschi@unipi.it.
  • Serra A; Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy. chiara.sanmartin@unipi.it.
  • Angelini LG; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy. chiara.sanmartin@unipi.it.
Molecules ; 24(20)2019 Oct 16.
Article em En | MEDLINE | ID: mdl-31623168
ABSTRACT
Linseed (Linum usitatissimum L.) is becoming more and more important in the health food market as a functional food, since its seeds and oil represent a rich source of bioactive compounds. Its chemical composition is strongly correlated with, and dependent on, genetic characteristics. The aim of this study was to evaluate the variation in seed yield, oil content, fatty acid composition and secondary metabolite profiles between a low-linolenic linseed variety, belonging to the Solin-type group (Solal), and a high-linolenic traditional one (Bethune), cultivated, both as spring crops, in open field conditions of Central Italy. The achieved results pointed out the different behavior of the two varieties in terms of growth cycle, oil content, and some important yield components, such as capsule number per plant and thousand seed weight. There were also significant differences in seed composition regarding total phenols, total flavonoids, antioxidant activities as well as in carotenoid, tocopherol, and tocotrienol profiles between the two varieties. In particular, Solal was characterized by the greatest contents of oil, phenols, flavonoids, α- and δ- tocotrienol, together with the highest antioxidant activity. Bethune, on the contrary, showed the highest amounts of carotenoids (lutein and ß-carotene). These results indicate a clear effect of the genetic characteristics on the biosynthesis of these secondary metabolites and, consequently, on the related antioxidant activity. Our findings suggest that the mutation process, responsible for the selection of the low-linolenic cultivar, is able to modify the biosynthetic pathways of carotenoids and phenolics.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Extratos Vegetais / Linho / Compostos Fitoquímicos Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Extratos Vegetais / Linho / Compostos Fitoquímicos Idioma: En Ano de publicação: 2019 Tipo de documento: Article