Your browser doesn't support javascript.
loading
Progression and Classification of Granular Osmiophilic Material (GOM) Deposits in Functionally Characterized Human NOTCH3 Transgenic Mice.
Gravesteijn, Gido; Munting, Leon P; Overzier, Maurice; Mulder, Aat A; Hegeman, Ingrid; Derieppe, Marc; Koster, Abraham J; van Duinen, Sjoerd G; Meijer, Onno C; Aartsma-Rus, Annemieke; van der Weerd, Louise; Jost, Carolina R; van den Maagdenberg, Arn M J M; Rutten, Julie W; Lesnik Oberstein, Saskia A J.
Afiliação
  • Gravesteijn G; Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Munting LP; Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Overzier M; Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Mulder AA; Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Hegeman I; Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Derieppe M; Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Koster AJ; Department of Pediatric Neuro-Oncology, Prinses Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
  • van Duinen SG; Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Meijer OC; Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Aartsma-Rus A; Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • van der Weerd L; Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Jost CR; Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • van den Maagdenberg AMJM; Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Rutten JW; Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
  • Lesnik Oberstein SAJ; Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
Transl Stroke Res ; 11(3): 517-527, 2020 06.
Article em En | MEDLINE | ID: mdl-31667734
ABSTRACT
CADASIL is a NOTCH3-associated cerebral small vessel disease. A pathological ultrastructural disease hallmark is the presence of NOTCH3-protein containing deposits called granular osmiophilic material (GOM), in small arteries. How these GOM deposits develop over time and what their role is in disease progression is largely unknown. Here, we studied the progression of GOM deposits in humanized transgenic NOTCH3Arg182Cys mice, compared them to GOM deposits in patient material, and determined whether GOM deposits in mice are associated with a functional CADASIL phenotype. We found that GOM deposits are not static, but rather progress in ageing mice, both in terms of size and aspect. We devised a GOM classification system, reflecting size, morphology and electron density. Six-month-old mice showed mostly early stage GOM, whereas older mice and patient vessels showed predominantly advanced stage GOM, but also early stage GOM. Mutant mice did not develop the most severe GOM stage seen in patient material. This absence of end-stage GOM in mice was associated with an overall lack of histological vascular pathology, which may explain why the mice did not reveal functional deficits in cerebral blood flow, cognition and motor function. Taken together, our data indicate that GOM progress over time, and that new GOM deposits are continuously being formed. The GOM staging system we introduce here allows for uniform GOM deposit classification in future mouse and human studies, which may lead to more insight into a potential association between GOM stage and CADASIL disease severity, and the role of GOM in disease progression.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / CADASIL / Receptor Notch3 Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / CADASIL / Receptor Notch3 Idioma: En Ano de publicação: 2020 Tipo de documento: Article