Your browser doesn't support javascript.
loading
Evidence for a role of protein phosphorylation in the maintenance of the cnidarian-algal symbiosis.
Simona, Fabia; Zhang, Huoming; Voolstra, Christian R.
Afiliação
  • Simona F; Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
  • Zhang H; Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
  • Voolstra CR; Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Mol Ecol ; 28(24): 5373-5386, 2019 12.
Article em En | MEDLINE | ID: mdl-31693769
ABSTRACT
The endosymbiotic relationship between cnidarians and photosynthetic dinoflagellate algae provides the foundation of coral reef ecosystems. This essential interaction is globally threatened by anthropogenic disturbance. As such, it is important to understand the molecular mechanisms underpinning the cnidarian-algal association. Here we investigated phosphorylation-mediated protein signalling as a mechanism of regulation of the cnidarian-algal interaction, and we report on the generation of the first phosphoproteome for the coral model system Aiptasia. Mass spectrometry-based phosphoproteomics using data-independent acquisition allowed consistent quantification of over 3,000 phosphopeptides totalling more than 1,600 phosphoproteins across aposymbiotic (symbiont-free) and symbiotic anemones. Comparison of the symbiotic states showed distinct phosphoproteomic profiles attributable to the differential phosphorylation of 539 proteins that cover a broad range of functions, from receptors to structural and signal transduction proteins. A subsequent pathway enrichment analysis identified the processes of "protein digestion and absorption," "carbohydrate metabolism," and "protein folding, sorting and degradation," and highlighted differential phosphorylation of the "phospholipase D signalling pathway" and "protein processing in the endoplasmic reticulum." Targeted phosphorylation of the phospholipase D signalling pathway suggests control of glutamate vesicle trafficking across symbiotic compartments, and phosphorylation of the endoplasmic reticulum machinery suggests recycling of symbiosome-associated proteins. Our study shows for the first time that changes in the phosphorylation status of proteins between aposymbiotic and symbiotic Aiptasia anemones may play a role in the regulation of the cnidarian-algal symbiosis. This is the first phosphoproteomic study of a cnidarian-algal symbiotic association as well as the first application of quantification by data-independent acquisition in the coral field.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosforilação / Simbiose / Ecossistema / Transcriptoma Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosforilação / Simbiose / Ecossistema / Transcriptoma Idioma: En Ano de publicação: 2019 Tipo de documento: Article