Your browser doesn't support javascript.
loading
Design and Synthesis of Basic Selective Estrogen Receptor Degraders for Endocrine Therapy Resistant Breast Cancer.
Lu, Yunlong; Gutgesell, Lauren M; Xiong, Rui; Zhao, Jiong; Li, Yangfeng; Rosales, Carlo I; Hollas, Michael; Shen, Zhengnan; Gordon-Blake, Jesse; Dye, Katherine; Wang, Yueting; Lee, Sue; Chen, Hu; He, Donghong; Dubrovyskyii, Oleksii; Zhao, Huiping; Huang, Fei; Lasek, Amy W; Tonetti, Debra A; Thatcher, Gregory R J.
Afiliação
  • Chen H; Department of Psychiatry , University of Illinois at Chicago , 1601 W Taylor Street , Chicago , Illinois 60612 , United States.
  • He D; Department of Psychiatry , University of Illinois at Chicago , 1601 W Taylor Street , Chicago , Illinois 60612 , United States.
  • Lasek AW; Department of Psychiatry , University of Illinois at Chicago , 1601 W Taylor Street , Chicago , Illinois 60612 , United States.
  • Thatcher GRJ; Department of Psychiatry , University of Illinois at Chicago , 1601 W Taylor Street , Chicago , Illinois 60612 , United States.
J Med Chem ; 62(24): 11301-11323, 2019 12 26.
Article em En | MEDLINE | ID: mdl-31746603
ABSTRACT
The clinical steroidal selective estrogen receptor (ER) degrader (SERD), fulvestrant, is effective in metastatic breast cancer, but limited by poor pharmacokinetics, prompting the development of orally bioavailable, nonsteroidal SERDs, currently in clinical trials. These trials address local breast cancer as well as peripheral metastases, but patients with brain metastases are generally excluded because of the lack of blood-brain barrier penetration. A novel family of benzothiophene SERDs with a basic amino side arm (B-SERDs) was synthesized. Proteasomal degradation of ERα was induced by B-SERDs that achieved the objectives of oral and brain bioavailability, while maintaining high affinity binding to ERα and both potency and efficacy comparable to fulvestrant in cell lines resistant to endocrine therapy or bearing ESR1 mutations. A novel 3-oxyazetidine side chain was designed, leading to 37d, a B-SERD that caused endocrine-resistant ER+ tumors to regress in a mouse orthotopic xenograft model.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tiofenos / Neoplasias da Mama / Desenho de Fármacos / Resistencia a Medicamentos Antineoplásicos / Moduladores Seletivos de Receptor Estrogênico / Receptor alfa de Estrogênio / Proteólise Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tiofenos / Neoplasias da Mama / Desenho de Fármacos / Resistencia a Medicamentos Antineoplásicos / Moduladores Seletivos de Receptor Estrogênico / Receptor alfa de Estrogênio / Proteólise Idioma: En Ano de publicação: 2019 Tipo de documento: Article