Your browser doesn't support javascript.
loading
Intrinsic dimension estimation for locally undersampled data.
Erba, Vittorio; Gherardi, Marco; Rotondo, Pietro.
Afiliação
  • Erba V; Dipartimento di Fisica dell'Università di Milano, and INFN, sezione di Milano, Via Celoria 16, 20100, Milano, Italy. erba.vittorio@gmail.com.
  • Gherardi M; Dipartimento di Fisica dell'Università di Milano, and INFN, sezione di Milano, Via Celoria 16, 20100, Milano, Italy.
  • Rotondo P; School of Physics and Astronomy, and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham, NG7 2RD, UK.
Sci Rep ; 9(1): 17133, 2019 Nov 20.
Article em En | MEDLINE | ID: mdl-31748557
Identifying the minimal number of parameters needed to describe a dataset is a challenging problem known in the literature as intrinsic dimension estimation. All the existing intrinsic dimension estimators are not reliable whenever the dataset is locally undersampled, and this is at the core of the so called curse of dimensionality. Here we introduce a new intrinsic dimension estimator that leverages on simple properties of the tangent space of a manifold and extends the usual correlation integral estimator to alleviate the extreme undersampling problem. Based on this insight, we explore a multiscale generalization of the algorithm that is capable of (i) identifying multiple dimensionalities in a dataset, and (ii) providing accurate estimates of the intrinsic dimension of extremely curved manifolds. We test the method on manifolds generated from global transformations of high-contrast images, relevant for invariant object recognition and considered a challenge for state-of-the-art intrinsic dimension estimators.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article