Your browser doesn't support javascript.
loading
Energetic Butterfly: Heat-Resistant Diaminodinitro trans-Bimane.
Zhang, Pengcheng; Kumar, Dheeraj; Zhang, Lei; Shem-Tov, Daniel; Petrutik, Natan; Chinnam, Ajay Kumar; Yao, Chuang; Pang, Siping; Gozin, Michael.
Afiliação
  • Zhang P; School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
  • Kumar D; Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
  • Zhang L; Software Center for High Performance Numerical Simulation, and Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
  • Shem-Tov D; School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
  • Petrutik N; School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
  • Chinnam AK; School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
  • Yao C; Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing, Yangtze Normal University, Chongqing 408100, China.
  • Pang S; School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
  • Gozin M; School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Molecules ; 24(23)2019 Nov 26.
Article em En | MEDLINE | ID: mdl-31779257
ABSTRACT
Due to a significant and prolific activity in the field of design and synthesis of new energetic molecules, it becomes increasingly difficult to introduce new explosophore structures with attractive properties. In this work, we synthesized a trans-bimane-based energetic material-3,7-diamino-2,6-dinitro-1H,5H-pyrazolo-[1,2-a]pyrazole-1,5-dione (4), the structure of which was comprehensively analyzed by a variety of advanced spectroscopic methods and by X-ray crystallo-graphy (with density of 1.845 g·cm-3 at 173 K). Although obtained crystals of 4 contained solvent molecules in their structure, state-of-the-art density functional theory (DFT) computational techniques allowed us to predict that solvent-free crystals of this explosive would preserve a similar tightly packed planar layered molecular arrangement, with the same number of molecules of 4 per unit cell, but with a smaller unit cell volume and therefore higher energy density. Explosive 4 was found to be heat resistant, with an onset decomposition temperature of 328.8 °C, and was calculated to exhibit velocity of detonation in a range of 6.88-7.14 km·s-1 and detonation pressure in the range of 19.14-22.04 GPa, using for comparison both HASEM and the EXPLO 5 software. Our results indicate that the trans-bimane explosophore could be a viable platform for the development of new thermostable energetic materials.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos Bicíclicos Heterocíclicos com Pontes Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos Bicíclicos Heterocíclicos com Pontes Idioma: En Ano de publicação: 2019 Tipo de documento: Article