Your browser doesn't support javascript.
loading
CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) Mediates Plant Resistance against Pseudomonas syringae.
Han, Baoda; Jiang, Yunhe; Cui, Guoxin; Mi, Jianing; Roelfsema, M Rob G; Mouille, Grégory; Sechet, Julien; Al-Babili, Salim; Aranda, Manuel; Hirt, Heribert.
Afiliação
  • Han B; King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia.
  • Jiang Y; King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia.
  • Cui G; King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
  • Mi J; King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia.
  • Roelfsema MRG; Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany.
  • Mouille G; Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
  • Sechet J; Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
  • Al-Babili S; King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia.
  • Aranda M; King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
  • Hirt H; King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia heribert.hirt@kaust.edu.sa.
Plant Physiol ; 182(2): 1052-1065, 2020 02.
Article em En | MEDLINE | ID: mdl-31806735
ABSTRACT
Plasma membrane (PM) depolarization functions as an initial step in plant defense signaling pathways. However, only a few ion channels/transporters have been characterized in the context of plant immunity. Here, we show that the Arabidopsis (Arabidopsis thaliana) Na+K+2Cl- (NKCC) cotransporter CCC1 has a dual function in plant immunity. CCC1 functions independently of PM depolarization and negatively regulates pathogen-associated molecular pattern-triggered immunity. However, CCC1 positively regulates plant basal and effector-triggered resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. In line with the compromised immunity to Pst DC3000, ccc1 mutants show reduced expression of genes encoding enzymes involved in the biosynthesis of antimicrobial peptides, camalexin, and 4-OH-ICN, as well as pathogenesis-related proteins. Moreover, genes involved in cell wall and cuticle biosynthesis are constitutively down-regulated in ccc1 mutants, and the cell walls of these mutants exhibit major changes in monosaccharide composition. The role of CCC1 ion transporter activity in the regulation of plant immunity is corroborated by experiments using the specific NKCC inhibitor bumetanide. These results reveal a function for ion transporters in immunity-related cell wall fortification and antimicrobial biosynthesis.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arabidopsis / Proteínas de Arabidopsis / Pseudomonas syringae / Resistência à Doença / Membro 2 da Família 12 de Carreador de Soluto Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arabidopsis / Proteínas de Arabidopsis / Pseudomonas syringae / Resistência à Doença / Membro 2 da Família 12 de Carreador de Soluto Idioma: En Ano de publicação: 2020 Tipo de documento: Article