A study on the spectral, microstructural, and magnetic properties of Eu-Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites synthesized by an ultrasonic-assisted approach.
Ultrason Sonochem
; 62: 104847, 2020 Apr.
Article
em En
| MEDLINE
| ID: mdl-31810870
In this study, an examination on the spectral, microstructural, and magnetic characteristics of Eu-Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites (Ba0.5Sr0.5NdxEuxFe12-2xO19 (xâ¯=â¯0.00-0.05) HFs) fabricated by an ultrasonic-assisted approach has been presented. An UZ SONOPULS HD 2070 ultrasonic homogenizer with frequency of 20â¯kHz and power of 70â¯W was used. The chemical bonding, structure and the morphology of the products were evaluated by Fourier-Transform Infrared (FT-IR) Spectroscopy, XRD (X-ray diffraction), scanning and transmission electron microscopy and techniques. The textural properties of the prepared nanomaterials were examined by using the Brunauer-Emmett-Teller (BET) method. The magnetic properties were studied using a vibrating sample magnetometer (VSM) at room temperature (RT) and low temperature 10â¯K. The magnitudes of various magnetic parameters including Ms (saturation magnetization), Mr (remanence) and Hc (coercivity) were estimated and evaluated. The M-H loops revealed the hard ferrimagnetic nature for all products at both temperatures. The Ms and Mr values showed a decreasing tendency with increasing degree of Eu3+ and Nd3+ substitutions whereas Hc values displayed an increasing trend. At RT, Ms, Mr and Hc values lie in the ranges of 63.0-68.8 emu·g-1, 24.6-39.2 emu·g-1 and 2252.4-2782.1 Oe, respectively. At 10â¯K, the values of Ms, Mr and Hc lie between 87.5-97.1 emu·g-1, 33.5-40.1 emu·g-1 and 2060.6-2417.2 Oe, respectively. The observed magnetic properties make the prepared products promising candidates to be applied in the recording media.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article