Your browser doesn't support javascript.
loading
Linking flow-stream variability to grain size distribution of suspended sediment from a satellite-based analysis of the Tiber River plume (Tyrrhenian Sea).
Pitarch, J; Falcini, F; Nardin, W; Brando, V E; Di Cicco, A; Marullo, S.
Afiliação
  • Pitarch J; NIOZ - Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University, PO Box 59, 1790 AB, Den Burg, Texel, The Netherlands.
  • Falcini F; CNR - Institute of Marine Sciences (ISMAR), Via Fosso del Cavaliere 100, 00133, Rome, Italy.
  • Nardin W; CNR - Institute of Marine Sciences (ISMAR), Via Fosso del Cavaliere 100, 00133, Rome, Italy. federico.falcini@cnr.it.
  • Brando VE; Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA.
  • Di Cicco A; CNR - Institute of Marine Sciences (ISMAR), Via Fosso del Cavaliere 100, 00133, Rome, Italy.
  • Marullo S; CNR - Institute of Marine Sciences (ISMAR), Via Fosso del Cavaliere 100, 00133, Rome, Italy.
Sci Rep ; 9(1): 19729, 2019 12 19.
Article em En | MEDLINE | ID: mdl-31857663
ABSTRACT
Several coastal regions on Earth have been increasingly affected by intense, often catastrophic, flash floods that deliver significant amounts of sediment along shorelines. One of the critical questions related to the impact of these impulsive runoffs is "are flash floods more efficient in delivering non-cohesive sandy sediment along the coasts?" Here we relate flow stages (i.e., from erratic to persistent) to the grain size distribution of the suspended load, by performing a synergic analysis of in-situ river discharge and satellite-retrieved grain size distribution, from 2002 to 2014, covering the 2012 Tiber River (Italy) exceptional flood event. Our analysis shows novel and promising results regarding the capability of remote sensing in characterizing suspended sediment in terms of grain size distribution and reveals that erratic stages favour delivering of non-cohesive sandy sediment more than the persistent stages. This conclusion is supported by numerical simulations and is consistent with previous studies on suspended sediment rating curves.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article