Your browser doesn't support javascript.
loading
Pressure-dependent electronic structure calculations using integral equation-based solvation models.
Pongratz, Tim; Kibies, Patrick; Eberlein, Lukas; Tielker, Nicolas; Hölzl, Christoph; Imoto, Sho; Beck Erlach, Markus; Kurrmann, Simon; Schummel, Paul Hendrik; Hofmann, Martin; Reiser, Oliver; Winter, Roland; Kremer, Werner; Kalbitzer, Hans Robert; Marx, Dominik; Horinek, Dominik; Kast, Stefan M.
Afiliação
  • Pongratz T; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
  • Kibies P; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
  • Eberlein L; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
  • Tielker N; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
  • Hölzl C; Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
  • Imoto S; Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  • Beck Erlach M; Institut für Biophysik und physikalische Biochemie, Universität Regensburg, 93040 Regensburg, Germany.
  • Kurrmann S; Institut für Biophysik und physikalische Biochemie, Universität Regensburg, 93040 Regensburg, Germany.
  • Schummel PH; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
  • Hofmann M; Institut für Organische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
  • Reiser O; Institut für Organische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
  • Winter R; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
  • Kremer W; Institut für Biophysik und physikalische Biochemie, Universität Regensburg, 93040 Regensburg, Germany.
  • Kalbitzer HR; Institut für Biophysik und physikalische Biochemie, Universität Regensburg, 93040 Regensburg, Germany.
  • Marx D; Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  • Horinek D; Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
  • Kast SM; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany. Electronic address: stefan.kast@tu-dortmund.de.
Biophys Chem ; 257: 106258, 2020 02.
Article em En | MEDLINE | ID: mdl-31881504
ABSTRACT
Recent methodological progress in quantum-chemical calculations using the "embedded cluster reference interaction site model" (EC-RISM) integral equation theory is reviewed in the context of applying it as a solvation model for calculating pressure-dependent thermodynamic and spectroscopic properties of molecules immersed in water. The methodology is based on self-consistent calculations of electronic and solvation structure around dissolved molecules where pressure enters the equations via an appropriately chosen solvent response function and the pure solvent density. Besides specification of a dispersion-repulsion force field for solute-solvent interactions, the EC-RISM approach derives the electrostatic interaction contributions directly from the wave function. We further develop and apply the method to a variety of benchmark cases for which computational or experimental reference data are either available in the literature or are generated specifically for this purpose in this work. Starting with an enhancement to predict hydration free energies at non-ambient pressures, which is the basis for pressure-dependent molecular population estimation, we demonstrate the performance on the calculation of the autoionization constant of water. Spectroscopic problems are addressed by studying the biologically relevant small osmolyte TMAO (trimethylamine N-oxide). Pressure-dependent NMR shifts are predicted and compared to experiments taking into account proper computational referencing methods that extend earlier work. The experimentally observed IR blue-shifts of certain vibrational bands of TMAO as well as of the cyanide anion are reproduced by novel methodology that allows for weighing equilibrium and non-equilibrium solvent relaxation effects. Taken together, the model systems investigated allow for an assessment of the reliability of the EC-RISM approach for studying pressure-dependent biophysical processes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Modelos Químicos Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Modelos Químicos Idioma: En Ano de publicação: 2020 Tipo de documento: Article