Your browser doesn't support javascript.
loading
Multipronged Approach to Combat Catheter-Associated Infections and Thrombosis by Combining Nitric Oxide and a Polyzwitterion: a 7 Day In Vivo Study in a Rabbit Model.
Singha, Priyadarshini; Goudie, Marcus J; Liu, Qiaohong; Hopkins, Sean; Brown, Nettie; Schmiedt, Chad W; Locklin, Jason; Handa, Hitesh.
Afiliação
  • Singha P; School of Chemical, Materials and Biomedical Engineering , The University of Georgia , Athens , Georgia 30602 , United States.
  • Goudie MJ; School of Chemical, Materials and Biomedical Engineering , The University of Georgia , Athens , Georgia 30602 , United States.
  • Liu Q; Department of Chemistry , The University of Georgia , Athens , Georgia 30602 , United States.
  • Hopkins S; School of Chemical, Materials and Biomedical Engineering , The University of Georgia , Athens , Georgia 30602 , United States.
  • Brown N; School of Chemical, Materials and Biomedical Engineering , The University of Georgia , Athens , Georgia 30602 , United States.
  • Schmiedt CW; College of Veterinary Medicine , The University of Georgia , Athens , Georgia 30602 , United States.
  • Locklin J; School of Chemical, Materials and Biomedical Engineering , The University of Georgia , Athens , Georgia 30602 , United States.
  • Handa H; Department of Chemistry , The University of Georgia , Athens , Georgia 30602 , United States.
ACS Appl Mater Interfaces ; 12(8): 9070-9079, 2020 Feb 26.
Article em En | MEDLINE | ID: mdl-32009376
The development of nonfouling and antimicrobial materials has shown great promise for reducing thrombosis and infection associated with medical devices with aims of improving device safety and decreasing the frequency of antibiotic administration. Here, the design of an antimicrobial, anti-inflammatory, and antithrombotic vascular catheter is assessed in vivo over 7 d in a rabbit model. Antimicrobial and antithrombotic activity is achieved through the integration of a nitric oxide donor, while the nonfouling surface is achieved using a covalently bound phosphorylcholine-based polyzwitterionic copolymer topcoat. The effect of sterilization on the nonfouling nature and nitric oxide release is presented. The catheters reduced viability of Staphylococcus aureus in long-term studies (7 d in a CDC bioreactor) and inflammation in the 7 d rabbit model. Overall, this approach provides a robust method for decreasing thrombosis, inflammation, and infections associated with vascular catheters.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Infecções Estafilocócicas / Staphylococcus aureus / Trombose / Materiais Revestidos Biocompatíveis / Infecções Relacionadas a Cateter / Catéteres / Antibacterianos / Óxido Nítrico Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Infecções Estafilocócicas / Staphylococcus aureus / Trombose / Materiais Revestidos Biocompatíveis / Infecções Relacionadas a Cateter / Catéteres / Antibacterianos / Óxido Nítrico Idioma: En Ano de publicação: 2020 Tipo de documento: Article