Your browser doesn't support javascript.
loading
RNN for Perturbed Manipulability Optimization of Manipulators Based on a Distributed Scheme: A Game-Theoretic Perspective.
IEEE Trans Neural Netw Learn Syst ; 31(12): 5116-5126, 2020 Dec.
Article em En | MEDLINE | ID: mdl-32011266
ABSTRACT
In order to leverage the unique advantages of redundant manipulators, avoiding the singularity during motion planning and control should be considered as a fundamental issue to handle. In this article, a distributed scheme is proposed to improve the manipulability of redundant manipulators in a group. To this end, the manipulability index is incorporated into the cooperative control of multiple manipulators in a distributed network, which is used to guide manipulators to adjust to the optimal spatial position. Moreover, from the perspective of game theory, this article formulates the problem into a Nash equilibrium. Then, a neural network with anti-noise ability is constructed to seek and approximate the optimal strategy profile of the Nash equilibrium problem with time-varying parameters. Theoretical analyses show that the neural network model has the superior global convergence and noise immunity. Finally, simulation results demonstrate that the neural network is effective in real-time cooperative motion generation of multiple redundant manipulators under perturbations in distributed networks.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article