Your browser doesn't support javascript.
loading
Coarse-scale PDEs from fine-scale observations via machine learning.
Lee, Seungjoon; Kooshkbaghi, Mahdi; Spiliotis, Konstantinos; Siettos, Constantinos I; Kevrekidis, Ioannis G.
Afiliação
  • Lee S; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
  • Kooshkbaghi M; Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.
  • Spiliotis K; Institute of Mathematics, University of Rostock, 18051 Rostock, Germany.
  • Siettos CI; Dipartimento di Matematica e Applicazioni "Renato Caccioppoli," Universitá degli Studi di Napoli Federico II, Corso Umberto I, 40, 80138 Napoli NA, Italy.
  • Kevrekidis IG; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Chaos ; 30(1): 013141, 2020 Jan.
Article em En | MEDLINE | ID: mdl-32013472
Complex spatiotemporal dynamics of physicochemical processes are often modeled at a microscopic level (through, e.g., atomistic, agent-based, or lattice models) based on first principles. Some of these processes can also be successfully modeled at the macroscopic level using, e.g., partial differential equations (PDEs) describing the evolution of the right few macroscopic observables (e.g., concentration and momentum fields). Deriving good macroscopic descriptions (the so-called "closure problem") is often a time-consuming process requiring deep understanding/intuition about the system of interest. Recent developments in data science provide alternative ways to effectively extract/learn accurate macroscopic descriptions approximating the underlying microscopic observations. In this paper, we introduce a data-driven framework for the identification of unavailable coarse-scale PDEs from microscopic observations via machine-learning algorithms. Specifically, using Gaussian processes, artificial neural networks, and/or diffusion maps, the proposed framework uncovers the relation between the relevant macroscopic space fields and their time evolution (the right-hand side of the explicitly unavailable macroscopic PDE). Interestingly, several choices equally representative of the data can be discovered. The framework will be illustrated through the data-driven discovery of macroscopic, concentration-level PDEs resulting from a fine-scale, lattice Boltzmann level model of a reaction/transport process. Once the coarse evolution law is identified, it can be simulated to produce long-term macroscopic predictions. Different features (pros as well as cons) of alternative machine-learning algorithms for performing this task (Gaussian processes and artificial neural networks) are presented and discussed.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article