Your browser doesn't support javascript.
loading
Sympathetic innervation suppresses the autophagic-lysosomal system in brown adipose tissue under basal and cold-stimulated conditions.
Przygodda, Franciele; Lautherbach, Natalia; Buzelle, Samyra Lopes; Goncalves, Dawit Albieiro; Assis, Ana Paula; Paula-Gomes, Sílvia; Garófalo, Maria Antonieta Rissato; Heck, Lilian Carmo; Matsuo, Flávia Sayuri; Mota, Ryerson Fonseca; Osako, Mariana Kiomy; Kettelhut, Isis C; Navegantes, Luiz C.
Afiliação
  • Przygodda F; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Lautherbach N; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Buzelle SL; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Goncalves DA; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Assis AP; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Paula-Gomes S; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Garófalo MAR; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Heck LC; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Matsuo FS; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Mota RF; Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Osako MK; Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Kettelhut IC; Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Navegantes LC; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
J Appl Physiol (1985) ; 128(4): 855-871, 2020 04 01.
Article em En | MEDLINE | ID: mdl-32027543
The sympathetic nervous system (SNS) activates cAMP signaling and promotes trophic effects on brown adipose tissue (BAT) through poorly understood mechanisms. Because norepinephrine has been found to induce antiproteolytic effects on muscle and heart, we hypothesized that the SNS could inhibit autophagy in interscapular BAT (IBAT). Here, we describe that selective sympathetic denervation of rat IBAT kept at 25°C induced atrophy, and in parallel dephosphorylated forkhead box class O (FoxO), and increased cathepsin activity, autophagic flux, autophagosome formation, and expression of autophagy-related genes. Conversely, cold stimulus (4°C) for up to 72 h induced thermogenesis and IBAT hypertrophy, an anabolic effect that was associated with inhibition of cathepsin activity, autophagic flux, and autophagosome formation. These effects were abrogated by sympathetic denervation, which also upregulated Gabarapl1 mRNA. In addition, the cold-driven sympathetic activation stimulated the mechanistic target of rapamycin (mTOR) pathway, leading to the enhancement of protein synthesis, evaluated in vivo by puromycin incorporation, and to the inhibitory phosphorylation of Unc51-like kinase-1, a key protein in the initiation of autophagy. This coincided with a higher content of exchange protein-1 directly activated by cAMP (Epac1), a cAMP effector, and phosphorylation of Akt at Thr308, all these effects being abolished by denervation. Systemic treatment with norepinephrine for 72 h mimicked most of the cold effects on IBAT. These data suggest that the noradrenergic sympathetic inputs to IBAT restrain basal autophagy via suppression of FoxO and, in the setting of cold, stimulate protein synthesis via the Epac/Akt/mTOR-dependent pathway and suppress the autophagosome formation, probably through posttranscriptional mechanisms.NEW & NOTEWORTHY The underlying mechanisms related to the anabolic role of sympathetic innervation on brown adipose tissue (BAT) are unclear. We show that sympathetic denervation activates autophagic-lysosomal degradation, leading to a loss of mitochondrial proteins and BAT atrophy. Conversely, cold-driven sympathetic activation suppresses autophagy and stimulates protein synthesis, leading to BAT hypertrophy. Given its high-potential capacity for heat production, understanding the mechanisms that contribute to BAT mass is important to optimize chances of survival for endotherms in cold ambients.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tecido Adiposo Marrom / Termogênese Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tecido Adiposo Marrom / Termogênese Idioma: En Ano de publicação: 2020 Tipo de documento: Article