Your browser doesn't support javascript.
loading
Recovery of muscle mass and muscle oxidative phenotype following disuse does not require GSK-3 inactivation.
Theeuwes, Wessel F; Pansters, Nicholas A M; Gosker, Harry R; Schols, Annemie M W J; Verhees, Koen J P; de Theije, Chiel C; van Gorp, Rick H P; Kelders, Marco C J M; Ronda, Onne; Haegens, Astrid; Remels, Alexander H V; Langen, Ramon C J.
Afiliação
  • Theeuwes WF; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands.
  • Pansters NAM; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands.
  • Gosker HR; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands.
  • Schols AMWJ; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands.
  • Verhees KJP; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands.
  • de Theije CC; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands.
  • van Gorp RHP; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands.
  • Kelders MCJM; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands.
  • Ronda O; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands.
  • Haegens A; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands.
  • Remels AHV; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands.
  • Langen RCJ; NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, the Netherlands. Electronic address: r.langen@maastrichtuniversity.nl.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165740, 2020 06 01.
Article em En | MEDLINE | ID: mdl-32087280
ABSTRACT

BACKGROUND:

Physical inactivity contributes to muscle wasting and reductions in mitochondrial oxidative phenotype (OXPHEN), reducing physical performance and quality of life during aging and in chronic disease. Previously, it was shown that inactivation of glycogen synthase kinase (GSK)-3ß stimulates muscle protein accretion, myogenesis, and mitochondrial biogenesis. Additionally, GSK-3ß is inactivated during recovery of disuse-induced muscle atrophy.

AIM:

Therefore, we hypothesize that GSK-3 inhibition is required for reloading-induced recovery of skeletal muscle mass and OXPHEN.

METHODS:

Wild-type (WT) and whole-body constitutively active (C.A.) Ser21/9 GSK-3α/ß knock-in mice were subjected to a 14-day hind-limb suspension/14-day reloading protocol. Soleus muscle mass, fiber cross-sectional area (CSA), OXPHEN (abundance of sub-units of oxidative phosphorylation (OXPHOS) complexes and fiber-type composition), as well as expression levels of their main regulators (respectively protein synthesis/degradation, myogenesis and peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) signaling) were monitored.

RESULTS:

Subtle but consistent differences suggesting suppression of protein turnover signaling and decreased expression of several OXPHOS sub-units and PGC-1α signaling constituents were observed at baseline in C.A. GSK-3 versus WT mice. Although soleus mass recovery during reloading occurred more rapidly in C.A. GSK-3 mice, this was not accompanied by a parallel increased CSA. The OXPHEN response to reloading was not distinct between C.A. GSK-3 and WT mice. No consistent or significant differences in reloading-induced changes in the regulatory steps of protein turnover, myogenesis or muscle OXPHEN were observed in C.A. GSK-3 compared to WT muscle.

CONCLUSION:

This study indicates that GSK-3 inactivation is dispensable for reloading-induced recovery of muscle mass and OXPHEN.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Atrofia Muscular / Desenvolvimento Muscular / Glicogênio Sintase Quinase 3 beta / Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Atrofia Muscular / Desenvolvimento Muscular / Glicogênio Sintase Quinase 3 beta / Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo Idioma: En Ano de publicação: 2020 Tipo de documento: Article